Neuroscience Data Formats, Models, Repositories and Analytics: A Review
DOI:
https://doi.org/10.56532/mjsat.v3i3.155Keywords:
Neuroscience, Data model , Data format, Data repository, Data analyticAbstract
As neurotechnologies have gotten better, a lot of neuroscientific research has been done using these new technologies. Even though labs all over the world produce a lot of neuro-data, most of this data has not been shared to help people from different fields understand neuroscience. The neuro-data sharing is essential because it accelerates the pace of discovery in neuroscience. Effective data sharing will depend on the standardized use of file or data formats, highly reusable data analytics tools, and data storage formats. In this review paper, we review the four domains (data format, data model, data repository, and data analytics) that are currently in use in the neuroscience community. In the end, we are discussing several challenges associated with data sharing.
References
D. B. Keator et al., “Towards structured sharing of raw and derived neuroimaging data across existing resources,” NeuroImage, vol. 82, pp. 647–661, 2013. doi:10.1016/j.neuroimage.2013.05.094
C. J. Markiewicz et al., “The OpenNeuro resource for sharing of Neuroscience Data,” eLife, vol. 10, 2021. doi:10.7554/elife.71774
A. S. Jwa and R. A. Poldrack, “The spectrum of data sharing policies in neuroimaging data repositories,” Human Brain Mapping, vol. 43, no. 8, pp. 2707–2721, 2022. doi:10.1002/hbm.25803
K. Rootes-Murdy et al., “Federated analysis of Neuroimaging Data: A review of the field,” Neuroinformatics, vol. 20, no. 2, pp. 377–390, 2021. doi:10.1007/s12021-021-09550-7
Donaldson, Devan Ray, and Joshua Wolfgang Koepke. “A Focus Groups Study on Data Sharing and Research Data Management.” Scientific Data 9, no. 1, 2022. https://doi.org/10.1038/s41597-022-01428-w.
P. Gao et al., “A Chinese multi-modal neuroimaging data release for increasing diversity of human brain mapping,” Scientific Data, vol. 9, no. 1, 2022. doi:10.1038/s41597-022-01413-3
R. A. Poldrack, and K. Gorgolewski, “Making big data open: Data sharing in neuroimaging” Nature Neuroscience, vol. 17, no. 11, pp. 1510-1517, Oct 2014, doi: 10.1038/nn.3818
W. Thomas, P. Bauer, M. Denker, S. Grün, M. Hanke, J. K., Steffen Oeltze-Jafra, et al. “NFDI-Neuro: Building a Community for Neuroscience Research Data Management in Germany.” Neuroforum, 2021. https://doi.org/10.1515/nf-2020-0036.
O. Rübel, Prabhat, P. Denes, D. Conant, E. Chang, and K. Bouchard. “BRAINformat: A Data Standardization Framework for Neuroscience Data” Biorxiv, pp. 1-23, Aug. 2015, doi:10.1101/024521
S. Ray, C. Chintaluri, U. S. Bhalla, and D. K. Wójcik, “NSDF: Neuroscience Simulation Data Format,” Neuroinformatics, vol.14, pp. 147-167, Nov. 2015, doi:10.1007/s12021-015-9282-5
A. Stoewer, K. C. Benda Jan, W. Thomas, and G. Jan. “File Format and Library for Neuroscience Data and Metadata.” Frontiers in Neuroinformatics 8, 2014. https://doi.org/10.3389/conf.fninf.2014.18.00027.
K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Carddok, S. Das, E. P. Duff et al, “The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments,” Sci Data, vol. 3, pp. 1-9, doi: 10.1038/sdata.2016.44
B. Kemp, A. Värri, A. C. Rosa, K. D. Nielsen, and J. Gade, “A simple format for exchange of digitized polygraphic recordings,” Electroencephalogr Clin Neurophysiol, vol. 82, no. 5, pp. 391-303, May. 1992, doi:10.1016/0013-4694(92)90009-7
G. Hellmann, M. Kuhn, M. Prosch, and M. Spreng, “Extensible biosignal (EBS) file format: simple method for EEG data exchange,” Electroencephalography and Clinical Neurophysiology, vol. 99, no. 5, pp. 426-431, Nov. 1996, https://doi.org/10.1016/S00134694(96)96502-5
B. Kemp and J. Olivan, “European data format 'plus' (EDF+), an EDF alike standard format for the exchange of physiological data,” Clin Neurophysiol, vol. 114, no. 9, pp. 1755-1761, Sep. 2003, doi: 10.1016/s1388-2457(03)00123-8
A. Schlögl, “GDF-a general dataformat for biosignals,”ArXiv Prepr. Cs0608052, 2006.
C. Rossant, S. N. Kadir, D. F. M. Goodman, J. Schulman, M. Belluscio, G. Buzsaki, and K. D. Harris, “Spike sorting for large, dense electrode arrays,” Nature Neuroscience, vol. 19, pp.634-641, Mar. 2016, doi:10.1101/015198, 2015
Collaborative Research in Computational Neuroscience, “Svoboda Lab data format – General Information,” 2014. [Online]. Available: https://crcns.org/files/data/alm-1/Svoboda_lab_data_format_general.pdf
C. Friedsam, “Development of a new uniform file format for neuroscience data across the globe,” M.S. thesis, Dept. Biotech., Harvard Univ., Cambridge, MA, USA, 2016.
B. H. Brinkmann, M. R., Bower, K. A. Stengel, G. A. Worrell, and M. Stead, “Multiscale electrophysiology format: an open open-source electrophysiology format using data compression, encryption, and cyclic redundancy check,” in Conf Proc IEEE Eng Med Biol Soc, 2010, pp. 7083-7086, doi:10.1109/IEMBS.2009.5332915
O. Rübel, M. Dougherty, Prabhat, P. Denes, D. Conant, E. F. Chang, and K. Bouchard, “Methods for specifying scientific data standards and modeling relationships with applications to neuroscience,” Frontiers in Neuroinformatics, vol. 10, pp. 1-16, Nov. 2016, doi:10.3389/fninf.2016.00048
J. L. Teeters, K. Godfrey, R. Young, C. Dang, C. Friedsam, B. Wark, et al, “Neurodata Without Borders: Creating a common data format for neurophysiology,” Cell Press, vol. 88, no. 4, pp. 629-634, Nov. 2015, https://doi.org/10.1016/j.neuron.2015.10.025
S. Garcia, D. Guarino, F. Jiallet, T. Jennings, R. Pröpper, P. L. Rautenberg er al, “Neo: an object model for handling electrophysiology data in multiple formats,” Front. Neuroinform, vol. 20, no. 8, pp. 1-10, Feb. 2014, doi: 10.3389/fninf.2014.00010
P. Cyril R., S. Appelhoff, K.J. Gorgolewski, G. Flandin, C. Phillips, A. Delorme, and R. Oostenveld. “EEG-Bids, an Extension to the Brain Imaging Data Structure for Electroencephalography.” Scientific Data 6, no. 1 (2019). https://doi.org/10.1038/s41597-019-0104-8.
P., Cyril R., R. Martinez-Cancino, Dung Truong, S. Makeig, and A. Delorme. “From Bids-Formatted EEG Data to Sensor-Space Group Results: A Fully Reproducible Workflow with EEGLAB and Limo EEG.” Frontiers in Neuroscience 14 2021. https://doi.org/10.3389/fnins.2020.610388.
N. Guiomar, K. J. Gorgolewski, E. Bock, T. L. Brooks, G. Flandin, A. Gramfort, R. N. Henson, et al. “Meg-Bids, the Brain Imaging Data Structure Extended to Magnetoencephalography.” Scientific Data 5, no. 1 2018. https://doi.org/10.1038/sdata.2018.110.
M. Martone, R. Gerkin, R. Moucek, S. Das, W. Goscinski, J. Hellgren-Kotaleski et al, “NIX – Neuroscience information exchange format,” Conference Abstract: Neuroinformatics, 2014. doi: 10.3389/conf.fninf.2014.18.00027
J. Grewe, T. Wachtler, and J. Benda, “A bottom-up approach to data annotation in neurophysiology,” Front Neuroinform, Aug. 2011, doi: 10.3389/fninf.2011.00016
U., Hannes, A.-K. Kock-Schoppenhauer, N. Deppenwiese, R. Gött, J. Kern, M. Lablans, R. W. Majeed, et al. “Understanding the Nature of Metadata: Systematic Review.” Journal of Medical Internet Research 24, no. 1 2022. https://doi.org/10.2196/25440.
J. Sprenger, L. Zehl, J. Pick, M. Sonntag, J. Grewe, T. Wachtler, S. Grün, and M. Denker. “OdMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments.” Frontiers in Neuroinformatics 13 2019. https://doi.org/10.3389/fninf.2019.00062.
J. Grewe, T. Wachtler and J. Benda. “A bottom-up approach to data annotation in neurophysiology”. Front. Neuroinform. Vol. 15, no. 16, 2011 doi: 10.3389/fninf.2011.00016
L. Zehl , F. Jaillet, A. Stoewer, J. Grewe, A. Sobolev, T. Wachtler, et al. “Handling metadata in a neurophysiology laboratory”. Front. Neuroinform. vol. 10, no. 26, 2016. doi: 10.3389/fninf.2016.00026
N. H. Goddard, M. Hucka, F. Howell, H. Cornelis, K. Shankar, and D. Beeman, “Towards NeuroML: Model description methods for collaborative modeling in neuroscience,” Philosophical Transactions of The Royal Society B Biological Sciences, vol. 365, pp. 1209-1228, Sep. 2001, doi: 10.1098/rstb.2001.0910
S. M. Crook, J. A. Bednar, and R. C. Cannon, “Creating, documenting and sharing network models,” Network Computation in Neural Systems, vol. 23, no. 4, Sep 2012, doi: 10.3109/0954898X.2012.722743
G. Padraig, S. Crook, R. C. Cannon, M. L. Hines, G. O. Billings, M. Farinella, T. M. Morse, et al. “NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail.” PLoS Computational Biology 6, no. 6 2010. https://doi.org/10.1371/journal.pcbi.1000815.
M. Halavi, S. Polavaram, D. E. Donohue, G. Hamilton, J. Hoyt, K. P. Smith, and G. A. Ascoli, “NeuroMorpho.Org implementation of digital neuroscience: dense coverage and integration with the NIF,” Neuroinformatics, vol. 6, no. 3, pp. 241-252, Sep 2008, doi: 10.1007/s12021-008-9030-1
G. A. Ascoli, E. D. Duncan, and M. Halavi. “Neuromorpho.Org: A Central Resource for Neuronal Morphologies.” The Journal of Neuroscience 27, no. 35 2007: 9247–51. https://doi.org/10.1523/jneurosci.2055-07.2007.
M. A. Akram, S. Nanda, P. Maraver, R. Armañanzas, and G. A. Ascoli. “An Open Repository for Single-Cell Reconstructions of the Brain Forest.” Scientific Data 5, no. 1 2018. https://doi.org/10.1038/sdata.2018.6.
B., Kayvan, M. A. Akram, and G. A. Ascoli. “An Open-Source Framework for Neuroscience Metadata Management Applied to Digital Reconstructions of Neuronal Morphology.” Brain Informatics 7, no. 1 2020. https://doi.org/10.1186/s40708-020-00103-3.
K. J. Gorgolewski, G. Varoquaux, G. Rivera, Y. Schwarz, S. S. Ghosh, C. Maumet et al, “NeuroVault.org: a webbased repository for collecting and sharing unthresholded statistical maps of the human brain,” Front. Neuroinform, Apr. 2015, https://doi.org/10.3389/fninf.2015.00008
K. J. Gorgolewski, G. Varoquaux, G. Rivera, Y. Schwartz, V. V. Sochat, S. S. Ghosh, C. Maumet, et al. “NeuroVault.Org: A Repository for Sharing Unthresholded Statistical Maps, Parcellations, and Atlases of the Human Brain.” NeuroImage 124 2016: 1242–44. https://doi.org/10.1016/j.neuroimage.2015.04.016.
D. N. Kennedy, C. Haselgrove, J. Riehl, N. Preuss, and R. Buccigrossi, “The NITRC image repository,” NeuroImage, vol. 124, pp. 1069–1073, Jun. 2015, doi:10.1016/j.neuroimage.2015.05.074
K. J. Gorgolewski O. Esteban, G. Schaefer, B. Wandell, and R. Poldrack, “OpenNeuro – a free online platform for sharing and analysis of neuroimaging data” F1000Research, vol. 6, 2017, doi: 10.7490/F1000RESEARCH.1114354.1
R. A. Poldrack, and K. J. Gorgolewski, “OpenfMRI: Open sharing of task fMRI data,” Neuroimage, vol. 144, pp. 259-261, Jan. 2017, doi: 10.1016/j.neuroimage.2015.05.073
M. Behroozi, and M. R. Daliri, “Software tools for the analysis of functional magnetic resonance imaging” Basic and Clinical Neuroscience, vol. 3, no. 5, pp. 71-83, Aug. 2012, https://www.researchgate.net/publication/287621054_Software_Tools
for_the_Analysis_of_functional_Magnetic_Resonance_Imaging
L., Vladimir, J. Mattout, S. Kiebel, C. Phillips, R. Henson, J. Kilner, G. Barnes, et al. “EEG and MEG Data Analysis in SPM8.” Computational Intelligence and Neuroscience 2011 2011: 1–32. https://doi.org/10.1155/2011/852961.
W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E. Nichols, “Statistical Parametric Mapping,” in Statistical Parametric Mapping: The Analysis of Functional Brain Images, CA, USA: Elsevier, 2007, pp. 10-31.
M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and S. M. Smith. “FSL,” NeuroImage, vol. 62, no. 2, pp. 782–790, Sep. 2011, doi:10.1016/j.neuroimage.2011.09.015
N. Lazar, “Analysis of Functional NeuroImages: AFNI” in The Statistical Analysis of Functional MRI Data, Georgia Athens, GA, USA: Springer, 2008, pp. 248-254.
R. Goebel, F. Esposito, and E. Formisano, “Analysis of FIAC data with BrainVoyager QX: From single-subject to cortically aligned group GLM analysis and self-organizing group IC,” Human Brain Mapping, vol. 27, no. 5, pp. 392-401, May. 2006, doi:10.1002/hbm.20249
Y. Cointepas, J. F. Mangin, L. Garnero, J. B. Poline, and H. Benali, “BrainVISA: Software platform for visualization and analysis of multi-modality brain data,” NeuroImage, vol. 13, no. 6, p. 98. Jun. 2001, doi:10.1016/s1053-8119(01)91441-7
C. Maumet, , T. Auer, A. Bowring, G. Chen, S. Das, G. Flandin, S. Ghosh, et al. “Sharing Brain Mapping Statistical Results with the Neuroimaging Data Model.” Scientific Data 3, no. 1 2016. https://doi.org/10.1038/sdata.2016.102.
J. B. Poline, J. L. Breeze, S. S. Ghosh, K. Gorgolewski, Y. O. Halchenko, M. Hanke, et al. (2012). Data sharing in neuroimaging research. Frontiers in Neuroinformatics, 6. https://doi.org/10.3389/fninf.2012.00009

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sze Wei Fong, Nurfaten Hamzah, Nurul Hashimah Ahamed Hassain Malim, Jafri Malin Abdullah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.