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1. INTRODUCTION 
Since COVID-19, it has been evident that there is an urgent 

need for improved medical waste management, in particular 
within healthcare facilities, in order to halt the further spread of 
the virus [1,2,3]. This is especially important in light of the fact 
that COVID-19 occurred. A significant danger of infection is 
posed by the inappropriate disposal of surgical waste, which 
includes used masks and gloves in addition to other objects that 
could potentially spread illness [4,5].  As a consequence of this, 
there is an immediate need to appropriately detect hazardous 
medical waste in order to effectively stop the spread of 
infectious diseases [6, 7]. 

In this study, the MSG dataset [8] have been used, which 
contains 1153 images of masks, bio-hazard symbols, and 
gloves. A deep learning-based object detection method called 
You Only Look Once (YOLO) [9] has achieved outstanding 
results in a variety of applications, including the analysis of 
medical images [10, 11]. Its success can be linked to the fact 
that it only requires one neural network to detect objects in real-
time, making it an excellent option for the detection of surgical 
waste.  

It is essential to carry out a comprehensive performance 
evaluation of a number of different versions of YOLO in order 
to conclude that the most appropriate YOLO    architecture for 
post-COVID-19 surgical waste detection can be determined. 
This study ought to take into account a wide range of 
considerations, such as accuracy, speed, and utilization of 
computing resources. When deciding whether or not a YOLO 
design is suitable for efficient surgical waste identification, 
these parameters are critical to consider. Therefore, it is 
necessary to conduct a thorough investigation of these aspects 
to make a rational conclusion regarding selecting the most 
effective YOLO architecture. So, this study will do a detailed 
performance analysis of several YOLO architectures. The 
survey which is conducted, will compare the performance of 
anchor-based variants of YOLOv5 [12], YOLOv7 [13], and 
recently published anchor-free YOLOv8 variants utilizing a 
variety of metrics.  

The study mainly aims to achieve the following objectives: 

1) Using the MSG dataset, determine how accurate the YOLO 
architectures are when identifying surgical waste materials 
such as masks, gloves, and biohazard symbols. 

In the wake of the COVID-19 outbreak, there has been a dramatic uptick in the need for 
efficient medical waste management, making it imperative that more surgical waste 
management systems are developed. Used surgical masks and gloves are examples of 
potentially infectious materials that are the subject of this research. By utilizing its real-time 
object detection capabilities, the You Only Look Once (YOLO) deep learning-based object 
detection algorithm is used to identify surgical waste. Using the MSG dataset, a deep dive 
into the performance of three different YOLO architectures (YOLOv5, YOLOv7, and 
YOLOv8) was undertaken. According to the findings, YOLOv5-s, YOLOv7-x, and 
YOLOv8-m all perform exceptionally well when it comes to identifying surgical waste. 
YOLOv8-m was the best model, with a mAP of 82.4%, among these three. To mitigate post-
COVID-19 infection risks and improve waste management efficiency, these results can be 
used to the creation of automated systems for medical waste sorting. 
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2) To demonstrate the real-time detection capabilities of the 
YOLO architectures by measuring their computing speed 
and efficiency to determine how well they handle surgical 
waste management. 

3) To determine the most suitable YOLO architecture for 
effective surgical waste detection by contrasting the        
performance of the anchor-based YOLO variants 
(YOLOv5 and YOLOv7) with the performance of the 
anchor-free YOLOv8 variants in terms of accuracy, speed, 
and resource utilization. 

The findings of this study have significant effects and 
provide valuable contributions to the field of medical waste 
management, especially when considering the challenges post-
COVID-19. The development of automated systems for 
surgical waste detection based on this research's findings will 
significantly reduce the risk of infection, to the advantage of 
both the general public and medical professionals. 

 

2. LITERATURE REVIEW 
Increased surgical waste, including used masks and gloves, 

which provide a significant risk of infection if improperly 
disposed of, has been brought on by the COVID-19 pandemic. 
It is vital to detect and separate such hazardous material to 
prevent the virus from spreading further. 

Several research have been carried out to categorize or find 
surgical waste. In their study, Chen et al. [14] assembled a video 
collection of four waste objects (gloves, hairnet, mask, and shoe 
cover). They suggested a motion detection-based technique to 
extract valuable frames. They offered an architecture that 
included characteristics from 2D and 3D convolutional neural 
networks to categorize waste videos. On their dataset, their 
proposed approach had a 79.99% accuracy rate. 
Themistocleous et al. [15] used Sentinel-2 pictures from orbit 
to find floating plastic liters. Kumar et al. [16] suggest an AI-
based system for classifying COVID-related medical waste. 
Before the commencement of the recycling process, the waste 
type classification was carried out using image texture-
dependent features, which essentially assisted in giving 
accurate sorting and classification. With an accuracy of 96.5%, 
the SVM classifier performs best in their study. Ferdous and 
Ahsan [8] present a method for identifying infectious COVID 
waste. They used several YOLO architectural versions for their 
investigation. When compared, YOLOX performs better than 
the other architectures, with a mAP of 92.49%. Panwar et al. 
[17] used AquaVision, a deep learning-based detection 
algorithm, using the AquaTrash dataset. With a mean Average 
Precision (mAP) of 81%, their suggested model can identify 
and categorize the various pollutants and hazardous waste 
floating in the waters and along the coast. Mehendale et al. [18] 
aimed to create an automated computer vision system for 
medical waste separation that can identify and classify medical 
waste into four categories: cotton, cotton gloves, cotton masks, 
and cotton syringes. They developed a model using transfer 
learning on the AlexNet deep learning network to achieve this. 
Training the system correctly classified medical waste, leading 
to an 86.17% validation accuracy. Syringes, masks, and gloves 
were the primary objects in the COVID-19 waste detection 
model created by Buragohain et al. [19]. In order to evaluate the 
performance of several CNN models on their dataset, they 
trained many models. On average, EfficientDet D0 was 82% 
accurate, making it the most accurate model out of all of them. 

The literature review suggests YOLO frameworks can 
efficiently identify and categorize surgical waste, such as 
biohazardous materials, masks, and gloves, after the COVID-
19 pandemic. Various YOLO models are experimented on the 
MSG dataset, comparing their performance through training 
and testing. Moreover, the recently released YOLOv8 
architecture from the relatively novel YOLOv7 and YOLOv5 
models is compared. Overall, the study analyzes the 
effectiveness of different YOLO architectures in detecting and 
sorting post-COVID-19 surgical waste. 

 

3. METHODOLOGY 

3.1 Dataset  

In this study, the MSG [8] dataset, which consists of 1153 
images containing 1990 instances of surgical biohazard 
symbols, masks, and gloves, is utilized. The dataset includes a 
variety of scenarios, such as real-time conditions, lighting 
variations, multiclass objects, underwater conditions, and 
floating wastes. It was built using real-time images acquired 
from various sources, including roads, beaches, bodies of water, 
and maintenance holes. While some of the images in the dataset 
are synthetic, the vast majority are natural and reflect actual 
settings. 

To ensure the diversity of the dataset, images were 
captured from various distances, including close-up and 
faraway views, to create a comprehensive variation. In addition, 
the dataset includes different angle variations, such as left, 
right, back, and top angles, to provide a complete representation 
of various perspectives. 

  

  

Fig. 1. Image Samples from the dataset 

For the study, the dataset was divided into training and 
validation sets, allocating 80% (923 images) to training and 
20% (230 images) to validation. Figure 1 illustrates the 
distribution of ideas among various classes. 568 images are 
classified as masks, whereas 251 images include masks and 
gloves. In addition, ten images have all three categories 
concurrently, while the remaining pictures follow an identical 
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distribution pattern. The MSG dataset contains 1133 mask 
instances, 598 glove instances, and 259 biohazard symbol 
instances. Figure 2 demonstrates the dataset distribution.  

 

Fig. 2. Dataset Distribution 

 

3.2 Framework 

An input image is initially transmitted into the YOLO 
network, and distinctive features are extracted via the network's 
backbone [9]. The backbone network then utilizes the extracted 
features to generate a feature pyramid, which is then passed to 
the head network. The head network has two primary functions: 
regression of bounding frames and classification of objects. The 
output of the prediction phase may include any combination of 
the three desired categories: masks, gloves, and biohazard 
items. 

In addition to the architecture, a novel dataset for detecting 
and managing infectious refuse in the environment has been 
curated. This dataset captures the diversity of real-world 
variations, angles, states, and textures. By incorporating such a 
wide variety of samples, the system's robustness and 
adaptability to numerous situations are improved. 

3.3 Objective 

This study's primary objective is to detect surgical debris 
and biohazard symbols accurately and in a reasonable amount 
of time. Numerous YOLO architectures are analyzed to achieve 
this objective, each of which serves a different purpose. In 
addition, two distinct varieties of YOLO models are chosen: 
one employing an anchor-based training mechanism and the 
other an anchor-free training mechanism. 

Table 1 provides an exhaustive summary of the object 
detection models utilized in this investigation. Three anchor-
based models and one anchor-free model are displayed in the 
table. Each model was meticulously selected based on its 
distinct qualities and capabilities. 

Various variations of the YOLOv5 architecture are 
utilized, such as YOLOv5-s, YOLOv5-m, YOLOv5-l, and 
YOLOv5-x. The YOLOv7 architecture was a hybrid of the 
YOLO-v7 and YOLOv7-x architectures. Four slightly distinct 
YOLOv8 architectures—YOLOv8-s, YOLOv8-m, YOLOv8-l, 
and YOLOv8-x—are utilized. The sizes of the four options are 
"small," "medium," "large," and "extra-large," denoted by the 
letters "s," "m," "l," and "x,", correspondingly. According to the 
theory, bigger models are more likely to be accurate than 
smaller ones. When compared to their bigger counterparts, 
smaller versions have quicker processing speeds. That is why it 

is viewpoint and application specificity that should be 
considered when deciding between model size and 
performance. For this reason, a complete explanation of the 
performance of YOLOv5, YOLOv7, and YOLOv8 requires an 
exhaustive study of all three versions. 

In addition, it is essential to evaluate the efficacy of anchor-
based and anchor-free detectors. Understanding the distinctions 
and capacities of these detection mechanisms is crucial in 
determining their suitability for particular applications. 

Table 1. Summary of Object Detection Models 

Training-Mechanism Architecture 

Anchor-based YOLOV5s 

YOLOV5m 

YOLOV5l 

YOLOV5x 

YOLOV7 
YOLOV7x 

Anchor-free YOLOV8s 

YOLOV8m 

YOLOV8l 
YOLOV8x 

 
3.4 Training 

The training was done using 80% of the data and validated 
with 20%. The whole thing was trained and validated using 
Google Cloud (Google Colaboratory). With an input image size 
of 416x416, the training procedure lasted for 40 iterations. In 
order to train the YOLOv5 architecture, the PyTorch 
environment is used and follows the training approach created 
by Ultralytics, a leading firm in the industry. Similarly, 
YOLOv7 and YOLOv8 were trained using pre-trained weights 
and the exact construction and procedures given by Ultralytics. 
For both models, a batch size of 16 and 30 were utilized. 

All models were trained in the PyTorch environment and 
an SGD optimizer was used. Table 2 represents the training 
hyper parameters. 

Table 2. Training hyperparameters 

Model Learning 

Rate 

Decay Batch Size 

YOLOv5 0.01 0.0005 16/30 

YOLOv7 0.01 0.0005 16/30 

YOLOv8 0.01 0.0005 16/30 

 

3.5 Evaluation Metrics 

Precision is the degree to which a model successfully 
identifies the goals for which it was trained. In comparison to 
the number of favorable occurrences witnessed, this statistic 
reveals how successfully the forecasts were made. Conversely, 
recall assesses the accuracy with which a model identifies all 
pertinent samples within a dataset. How many instances of good 
things in the dataset are measured by the optimistic prediction-
to-actual-data ratio. 

This study uses Average Precision (AP), a summary of the 
Precision-Recall (PR) curve [20, 21], to evaluate the 
performance of a model. A high accuracy rating indicates that 
the model's object classification is quite trustworthy. The 
model's performance may be illustrated by constructing a PR 
curve with the help of recall and accuracy values. 
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The area under the curve (AUC) is a representation of the 
precision-recall (PR) curve, and the letter "P" stands for it. The 
average precision (AP) metric may be calculated using 
Equation 1. The number of thresholds employed in this 
equation is represented by the variable n. For every precision or 
recall value, the difference between the current and next recall 
values has to be taken into account in order to calculate AP. 
Multiplying the disparity by the Interpolated Precision (IP) 
value is the next step. 

For each given recall value (R), the maximum accuracy 
that may be achieved is known as Interpolated accuracy (IP) 
when the matching recall value is equal to or higher than R. For 
each cutoff, the AP is calculated by adding the recall and 
accuracy values, with each entry serving as a weight. 

            𝐴𝑃 =  ∑ [𝑅(𝑘) − 𝑅(𝑘 + 1)] × 𝐼𝑃(𝑘)𝑘=𝑛−1
𝑘=0                             (1) 

The Mean Average Precision (mAP) is an additional important 
metric that is calculated using Equation 2 and the AP values for 
each class. The variable n in this equation represents the number 
of types. 

                                 𝑚𝐴𝑃 =  
1

𝑛
 ∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1             (2) 

4. RESULTS ANALYSIS 

4.1 Findings 

Table 3 shows the results for all the YOLO models used in 
this study. 

Table 3. Results of all the YOLO models used 

Model 
Batch 

Size 

Mask 

AP 

Gloves 

AP 

Biohazard 

AP 

mAP 

YOLOV5s 16 94.5 80.8 63.8 79.7 

30 93.7 81.8 69.9 81.8 

YOLOV5m 16 93.3 77.9 63.9 78.4 

30 93.6 81.6 52.0 75.7 

YOLOV5l 16 92.6 80.9 65.0 79.5 

30 95.2 81.7 65.1 80.7 

YOLOV5x 16 93.8 80.0 59.1 77.6 

30 93.1 82.8 66.3 80.7 

YOLOV7 16 96.1 76.8 67.5 80.2 

30 93.9 78.8 67.6 80.1 

YOLOV7x 16 95.4 81.0 62.1 79.5 

30 95.7 88.1 60.7 81.5 

YOLOV8s 16 92.6 83.2 62.6 79.5 

30 90.9 75.5 66.4 77.6 

YOLOV8m 16 92.2 82.8 55.3 77.1 

30 90.1 83.2 73.8 82.4 

YOLOV8l 16 92.5 76.2 61.8 76.8 

30 93.2 79.2 70.3 80.9 

YOLOV8x 16 91.8 77.0 65.8 78.2 

30 93.6 77.3 62.0 77.7 

Figure 3 provides a comprehensive analysis of the 
performance of various YOLO architectures for surgical waste 
detection evaluated with batch size of 16. The results are 
estimated based on the average precision (AP) for each class 
(mask, gloves, and biohazard) as well as the mean average 
accuracy (mAP), which is an overall measure of the models' 
performance. 

 

Fig. 3. Comprehensive Performance of Batch 16 

When it came to masks, the top three YOLOv5 series were 
YOLOv5s (94.5% AP), YOLOv5m (93.3% AP), and YOLOv5l 
(92.6% AP). In terms of gloves AP, however, YOLOv5l came 
out on top with a whopping 80.9%. With an AP of 59.1%, 
biohazard detection was the worst of the three areas where 
YOLOv5x performed poorly. In terms of overall mAP, 
YOLOv5s was the best at 79.7 percent. 

With an impressive AP of 96.1% for masks and 
competitive performance in identifying biohazards and gloves, 
YOLOv7 produced remarkable results. In addition, YOLOv7x 
has shown remarkable performance with a 95.4% success rate. 
The mean absolute percentage (mAP) for both models was 
79.5%. 

The anchor-free YOLOv8 series, YOLOv8s made an 
astounding 83.2% gloves AP and YOLOv8m was competitive 
across the board. Lowest AP for gloves was achieved by 
YOLOv8l (76.2%), but YOLOv8x and YOLOv8l both had 
lower AP values. In YOLOv8 models, mAP values varied 
between 76.8% and 79.5%. 

The results demonstrate that different YOLO architectures 
have varying capacities in detecting specific classes. YOLOv7 
performed exceptionally well when seeing masks, whereas 
YOLOv8s excelled at identifying mittens. However, there is a 
trade-off between the performance of various classes, with 
some architectures performing exceptionally well in one 
category but relatively poorly in others. 

Figure 4 provides a comprehensive analysis of the 
performance of various YOLO architectures for surgical waste 
detection evaluated with a batch size of 30. 

 

Fig. 4. Comprehensive Performance of Batch 30 
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Among the YOLOv5 series, YOLOv5l had the best 
performance in mask detection with an AP of 95.2%. YOLOv5s 
had the best AP for biohazards at 69%, while YOLOv5x had 
the best AP for gloves at 82.8%. The mAP for all YOLOv5 
models varied between 75.7% and 81.8%. 

When comparing YOLOv7 to YOLOv7x, the results were 
competitive. YOLOv7x's 88.8% AP was the most of any glove, 
while YOLOv7's 93.9% AP was the highest of any mask. Both 
models demonstrated comparable biohazard detection abilities, 
with mAPs of around 80.1% and 81.1%, respectively. 

No class in the anchor-free YOLOv8 series did better than 
YOLOv8m. Its accuracy percentages were 83.2% for gloves, 
73.8% for biohazards, and 82.4% overall. YOLOv8s had the 
lowest performance in gloves AP at 75.5%, in contrast to 
YOLOv8l's outstanding mAP of 80.9% and competitive 
performance throughout all categories. When it came to 
accuracy, YOLOv8x was on par across the board, scoring 
77.7%. 

The results show that different courses had different levels 
of success with YOLO frameworks. Models vary in their ability 
to identify certain objects; for instance, YOLOv8m is more 
adept at detecting gloves than YOLOv5s is at detecting 
biohazards. Choosing the right YOLO design requires careful 
consideration of the unique requirements and objectives of 
surgical waste detection. 

This comprehensive data analysis allowed to compare the 
YOLO designs and brings out the pros and cons of each model. 
Researchers may employ this data to develop an appropriate 
YOLO design based on the particular objectives and aims of 
surgical waste detection. 

 

Fig. 5. YOLOV5s (B30) Recall curve 

 

Fig. 6. YOLOV5m (B16) Recall curve 

 

Fig. 7. YOLOV5l (B30) Recall curve 

 

Fig. 8. YOLOV5x (B30) Recall curve 
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Fig. 9. YOLOV7 (B16) Recall curve 

 

Fig. 10. YOLOV7x (B30) Recall curve 

 

Fig. 11. YOLOV8s (B16) Recall curve 

 

Fig. 12. YOLOV8m (B30) Recall curve 

 

Fig. 13. YOLOV8l (B30) Recall curve 

 

Fig. 14. YOLOV8x (B16) Recall curve 
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4.2 Discussions 

This research uses the MSG dataset to compare and 
contrast different YOLO topologies. The results are laid out in 
the table that follows. With an overall mAP of 81.8% when 
tested with a batch size of 30, the YOLOv5-architecture 
outperformed the other YOLOv5 models. Compared to 
YOLOv7, YOLOv7-x fared substantially better with an overall 
mAP score of 81.5%. At a batch size of 30, the YOLOv8-m 
architecture achieved an overall map score of 82.4%, which was 
also the highest score of all the models, making it the most 
performant of the YOLOv8 models. 

Different YOLO models have different strengths and 
weaknesses when it comes to detecting surgical waste. When it 
comes to identifying gloves and masks, YOLOv5s performs 
admirably, and its accuracy remains high throughout both batch 
sizes. Having said that, its biohazard detection AP isn't great. 
While YOLOv5m performs adequately when testing for masks 
and gloves, it fails miserably when testing for biohazards. With 
its exceptional accuracy, YOLOv5l not only recognizes gloves 
and biohazards, but also masks. Masks are YOLOv5x's strong 
suit, not gloves or biohazards. While YOLOv7 does a 
respectable task at detecting mask and gloves, it isn't always in 
particular suitable at detecting biohazards. In terms of glove 
detection, YOLOv7x excels, but in relation to masks and 
biohazard detection, it falls a way short. Despite its stable 
overall performance with biohazards and mask, YOLOv8s fails 
to meet expectations with regards to gloves. In assessment to its 
advanced overall performance whilst checking out gloves and 
biohazards, YOLOv8m's AP is decrease when testing masks. It 
outperforms all different models in terms of mAP. When it 
involves identifying mask, YOLOv8l does a respectable task, 
but in terms of biohazards and gloves, it has hassle. While 
YOLOv8x is not perfect, it performs a first-rate activity in 
maximum classes except for biohazard identification and 
gloves. Prior to selecting a way to as it should be become aware 
of surgical waste, weigh the professionals and cons of every 
kind. 

4.3 Comparison of the Study 

The approach, with previous related studies, is shown in 
Table 4. 

Table 4. Comparison with previous studies 
AUTHOR DETECTION 

CRITERIA 

ANCHO

R-

BASED 

METHO

D 

ANCHOR-

FREE 

METHOD 

BEST 

MODEL 

mAP 

[22] Vehicle 

Detection 

YES NO YOLOv5

x 

28.70% 

[23] Protective 

equipment 

detection 

YES YES YOLOX-

m 

89.84% 

[24] Garbage 

Detection 

YES NO YOLOv3 59.57% 

[25] Unsafe 

Behavior 

Detection 

YES NO YOLO-

AW 

76.70% 

[26] Traffic Sign 

Recognition 

YES NO YOLOv4 99.98% 

[8] Surgical 

Waste 

detection 

YES YES YOLOX

L 

92.49% 

[27] Face Mask 

Detection 

YES NO YOLOv4 98.30% 

Ours Surgical 

Waste 

detection 

YES YES YOLOv8

m 

82.40% 

4.4 Real-time observation 

The best model (YOLOV8-m with a confidence rate of 
0.25) is implemented on a video to check how it performs in 
real-world scenarios. The results are depicted in Figure 15. 
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Fig. 15. Results of real-time observation 

It is clear from the screenshots that the model was 
successful in accurately identifying the majority of the classes. 
However, specific problems were discovered, such as the fact 
that it incorrectly identified blue items as gloves and that it was 
unable to distinguish between gloves and masks. Additionally, 
the dataset includes many photos of underwater waste, which 
may contribute to the model's improved performance in 
recognizing surgical wastes buried underwater.   

 

5. LIMITATIONS AND FUTURE RESEARCH 

DIRECTIONS 
The YOLOv8-m architecture can identify surgical waste 

on the MSG dataset, according to this study. However, there are 
major limitations that prevent it from being used to build 
automated systems for medical waste sorting and disposal. 
Specifically, the MSG dataset does not include all of the 
complex real-world scenarios that may be encountered because 
of different camera angles, occlusions, and illumination. 
Because of this, YOLOv8-m's recognition accuracy could be 
compromised in difficult settings where the training data was 
not available, for example, in situations where there are 
obstructions or shadows produced by cluttered backgrounds. 
Possible difficulties in accurately sorting medical waste may 
arise from the algorithm's inability to consistently differentiate 
between seemingly identical classifications, such as masks and 
gloves. Given that testing was conducted on a small dataset of 
1,153 pictures, it is imperative that bigger and more realistic 
datasets drawn from actual clinical scenarios undergo more 
comprehensive evaluation. Due to the model's inability to 
generalize to novel types of trash, detection accuracy may 
suffer when exposed to more recent types of trash. Since 
overlapping waste items and severe occlusions can greatly 
reduce detection accuracy, more robust approaches to 
specifically handle occlusions are also essential. Variations in 

camera angle and distance from the garbage cans may also 
affect the final product.    

There are some potential areas for further research in 
surgical waste identification. To assess the performance of 
various deep learning architectures in surgical waste 
identification, future studies may look into YOLO alternatives, 
such as Faster R-CNN, SSD. Moreover, integrating the surgical 
waste detection system with automated waste management 
systems might be the subject of future research. This would 
allow for the development of comprehensive solutions that 
efficiently separate, dispose of, and monitor surgical 
waste. Additionally, future studies in this field might use varied 
datasets to make surgical waste detection models more 
generalizable and resilient, so they work better in a variety of 
real-world settings. 

 

6.  CONCLUSION 
The examination of the MSG dataset is concluded by 

contrasting various YOLO-based architectures. According to 
the results, mAP was increased by 82.4% using anchor-free 
YOLOv8-m and a group size of 30. The findings will enhance 
the design of automated systems, thereby reducing the risk of 
infection for both patients and medical personnel. This study 
focuses solely on YOLO-based architectures, omitting 
additional deep-learning methodologies and conventional 
methods for detecting surgical waste. In addition, the 
performance evaluation is conducted with a limited data set that 
may not represent the vast array of surgical waste encountered 
in usage. Additional research is necessary to fill in these voids 
and learn everything there is to know about locating and 
disposing of surgical refuse. Future research in this area may 
utilize other datasets to improve the precision and dependability 
of surgical waste detection. Further studies could also 
investigate integrating the surgical waste detection system with 
waste management systems. Moreover, researching and 
comparing the performance of other deep learning methods and 
conventional techniques for detecting surgical waste can be an 
excellent addition to this study. This would make waste 
separation, disposal, and monitoring more efficient, assuring 
proper management and compliance with regulations. In 
addition, as the requirements for medical waste management 
tend to evolve, it would be beneficial to examine how the 
selected YOLO architecture performs in a real-world healthcare 
setting. This type of research could evaluate the system's 
efficacy in the real world and identify potential limitations. 
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