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ABSTRACT

In the wake of the COVID-19 outbreak, there has been a dramatic uptick in the need for
efficient medical waste management, making it imperative that more surgical waste
management systems are developed. Used surgical masks and gloves are examples of
potentially infectious materials that are the subject of this research. By utilizing its real-time
object detection capabilities, the You Only Look Once (YOLO) deep learning-based object
detection algorithm is used to identify surgical waste. Using the MSG dataset, a deep dive
into the performance of three different YOLO architectures (YOLOv5, YOLOv7, and
YOLOvV8) was undertaken. According to the findings, YOLOvV5-s, YOLOv7-x, and
YOLOv8-m all perform exceptionally well when it comes to identifying surgical waste.
YOLOvV8-m was the best model, with a mAP of 82.4%, among these three. To mitigate post-
COVID-19 infection risks and improve waste management efficiency, these results can be
used to the creation of automated systems for medical waste sorting.

© 2024 The Authors. Published by Penteract Technology.
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Since COVID-19, it has been evident that there is an urgent
need for improved medical waste management, in particular
within healthcare facilities, in order to halt the further spread of
the virus [1,2,3]. This is especially important in light of the fact
that COVID-19 occurred. A significant danger of infection is
posed by the inappropriate disposal of surgical waste, which
includes used masks and gloves in addition to other objects that
could potentially spread illness [4,5]. As a consequence of this,
there is an immediate need to appropriately detect hazardous
medical waste in order to effectively stop the spread of
infectious diseases [6, 7].

In this study, the MSG dataset [8] have been used, which
contains 1153 images of masks, bio-hazard symbols, and
gloves. A deep learning-based object detection method called
You Only Look Once (YOLO) [9] has achieved outstanding
results in a variety of applications, including the analysis of
medical images [10, 11]. Its success can be linked to the fact
that it only requires one neural network to detect objects in real-
time, making it an excellent option for the detection of surgical
waste.
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It is essential to carry out a comprehensive performance
evaluation of a number of different versions of YOLO in order
to conclude that the most appropriate YOLO  architecture for
post-COVID-19 surgical waste detection can be determined.
This study ought to take into account a wide range of
considerations, such as accuracy, speed, and utilization of
computing resources. When deciding whether or not a YOLO
design is suitable for efficient surgical waste identification,
these parameters are critical to consider. Therefore, it is
necessary to conduct a thorough investigation of these aspects
to make a rational conclusion regarding selecting the most
effective YOLO architecture. So, this study will do a detailed
performance analysis of several YOLO architectures. The
survey which is conducted, will compare the performance of
anchor-based variants of YOLOvV5 [12], YOLOv7 [13], and
recently published anchor-free YOLOV8 variants utilizing a
variety of metrics.

The study mainly aims to achieve the following objectives:

1) Using the MSG dataset, determine how accurate the YOLO
architectures are when identifying surgical waste materials
such as masks, gloves, and bichazard symbols.
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2) To demonstrate the real-time detection capabilities of the
YOLO architectures by measuring their computing speed
and efficiency to determine how well they handle surgical
waste management.

3) To determine the most suitable YOLO architecture for
effective surgical waste detection by contrasting the
performance of the anchor-based YOLO variants
(YOLOvV5 and YOLOv7) with the performance of the
anchor-free YOLOVS variants in terms of accuracy, speed,
and resource utilization.

The findings of this study have significant effects and
provide valuable contributions to the field of medical waste
management, especially when considering the challenges post-
COVID-19. The development of automated systems for
surgical waste detection based on this research's findings will
significantly reduce the risk of infection, to the advantage of
both the general public and medical professionals.

2. LITERATURE REVIEW

Increased surgical waste, including used masks and gloves,
which provide a significant risk of infection if improperly
disposed of, has been brought on by the COVID-19 pandemic.
It is vital to detect and separate such hazardous material to
prevent the virus from spreading further.

Several research have been carried out to categorize or find
surgical waste. In their study, Chen et al. [14] assembled a video
collection of four waste objects (gloves, hairnet, mask, and shoe
cover). They suggested a motion detection-based technique to
extract valuable frames. They offered an architecture that
included characteristics from 2D and 3D convolutional neural
networks to categorize waste videos. On their dataset, their
proposed approach had a 79.99% accuracy rate.
Themistocleous et al. [15] used Sentinel-2 pictures from orbit
to find floating plastic liters. Kumar et al. [16] suggest an Al-
based system for classifying COVID-related medical waste.
Before the commencement of the recycling process, the waste
type classification was carried out using image texture-
dependent features, which essentially assisted in giving
accurate sorting and classification. With an accuracy of 96.5%,
the SVM classifier performs best in their study. Ferdous and
Ahsan [8] present a method for identifying infectious COVID
waste. They used several YOLO architectural versions for their
investigation. When compared, YOLOX performs better than
the other architectures, with a mAP of 92.49%. Panwar et al.
[17] used AquaVision, a deep learning-based detection
algorithm, using the AquaTrash dataset. With a mean Average
Precision (mMAP) of 81%, their suggested model can identify
and categorize the various pollutants and hazardous waste
floating in the waters and along the coast. Mehendale et al. [18]
aimed to create an automated computer vision system for
medical waste separation that can identify and classify medical
waste into four categories: cotton, cotton gloves, cotton masks,
and cotton syringes. They developed a model using transfer
learning on the AlexNet deep learning network to achieve this.
Training the system correctly classified medical waste, leading
to an 86.17% validation accuracy. Syringes, masks, and gloves
were the primary objects in the COVID-19 waste detection
model created by Buragohain et al. [19]. In order to evaluate the
performance of several CNN models on their dataset, they
trained many models. On average, EfficientDet DO was 82%
accurate, making it the most accurate model out of all of them.

The literature review suggests YOLO frameworks can
efficiently identify and categorize surgical waste, such as
biohazardous materials, masks, and gloves, after the COVID-
19 pandemic. Various YOLO models are experimented on the
MSG dataset, comparing their performance through training
and testing. Moreover, the recently released YOLOvVS
architecture from the relatively novel YOLOvV7 and YOLOv5
models is compared. Overall, the study analyzes the
effectiveness of different YOLO architectures in detecting and
sorting post-COVID-19 surgical waste.

3. METHODOLOGY

3.1 Dataset

In this study, the MSG [8] dataset, which consists of 1153
images containing 1990 instances of surgical biohazard
symbols, masks, and gloves, is utilized. The dataset includes a
variety of scenarios, such as real-time conditions, lighting
variations, multiclass objects, underwater conditions, and
floating wastes. It was built using real-time images acquired
from various sources, including roads, beaches, bodies of water,
and maintenance holes. While some of the images in the dataset
are synthetic, the vast majority are natural and reflect actual
settings.

To ensure the diversity of the dataset, images were
captured from various distances, including close-up and
faraway views, to create a comprehensive variation. In addition,
the dataset includes different angle variations, such as left,
right, back, and top angles, to provide a complete representation
of various perspectives.

vosiade

Fig. 1. Image Samples from the dataset

For the study, the dataset was divided into training and
validation sets, allocating 80% (923 images) to training and
20% (230 images) to validation. Figure 1 illustrates the
distribution of ideas among various classes. 568 images are
classified as masks, whereas 251 images include masks and
gloves. In addition, ten images have all three categories
concurrently, while the remaining pictures follow an identical
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distribution pattern. The MSG dataset contains 1133 mask
instances, 598 glove instances, and 259 biohazard symbol
instances. Figure 2 demonstrates the dataset distribution.

Fig. 2. Dataset Distribution

3.2 Framework

An input image is initially transmitted into the YOLO
network, and distinctive features are extracted via the network's
backbone [9]. The backbone network then utilizes the extracted
features to generate a feature pyramid, which is then passed to
the head network. The head network has two primary functions:
regression of bounding frames and classification of objects. The
output of the prediction phase may include any combination of
the three desired categories: masks, gloves, and biohazard
items.

In addition to the architecture, a novel dataset for detecting
and managing infectious refuse in the environment has been
curated. This dataset captures the diversity of real-world
variations, angles, states, and textures. By incorporating such a
wide variety of samples, the system's robustness and
adaptability to numerous situations are improved.

3.3 Objective

This study's primary objective is to detect surgical debris
and biohazard symbols accurately and in a reasonable amount
of time. Numerous YOLO architectures are analyzed to achieve
this objective, each of which serves a different purpose. In
addition, two distinct varieties of YOLO models are chosen:
one employing an anchor-based training mechanism and the
other an anchor-free training mechanism.

Table 1 provides an exhaustive summary of the object
detection models utilized in this investigation. Three anchor-
based models and one anchor-free model are displayed in the
table. Each model was meticulously selected based on its
distinct qualities and capabilities.

Various variations of the YOLOv5 architecture are
utilized, such as YOLOv5-s, YOLOv5-m, YOLOv5-I, and
YOLOvV5-x. The YOLOvV7 architecture was a hybrid of the
YOLO-v7 and YOLOvV7-x architectures. Four slightly distinct
YOLOVS architectures—YOLOvV8-s, YOLOvV8-m, YOLOV8-,
and YOLOv8-x—are utilized. The sizes of the four options are
"small,” "medium,” "large," and "extra-large,” denoted by the
letters "s,"” "m," "l," and "'x,", correspondingly. According to the
theory, bigger models are more likely to be accurate than
smaller ones. When compared to their bigger counterparts,
smaller versions have quicker processing speeds. That is why it

is viewpoint and application specificity that should be
considered when deciding between model size and
performance. For this reason, a complete explanation of the
performance of YOLOV5, YOLOvV7, and YOLOVS requires an
exhaustive study of all three versions.

In addition, it is essential to evaluate the efficacy of anchor-
based and anchor-free detectors. Understanding the distinctions
and capacities of these detection mechanisms is crucial in
determining their suitability for particular applications.

Table 1. Summary of Object Detection Models

Architecture

YOLOVS5s
YOLOVS5Sm
YOLOVSI
YOLOVS5x
YOLOV7
YOLOV7x

YOLOVSs
YOLOV8m
YOLOVSI
YOLOV8X

Training-Mechanism
Anchor-based

Anchor-free

3.4 Training

The training was done using 80% of the data and validated
with 20%. The whole thing was trained and validated using
Google Cloud (Google Colaboratory). With an input image size
of 416x416, the training procedure lasted for 40 iterations. In
order to train the YOLOvV5 architecture, the PyTorch
environment is used and follows the training approach created
by Ultralytics, a leading firm in the industry. Similarly,
YOLOvV7 and YOLOV8 were trained using pre-trained weights
and the exact construction and procedures given by Ultralytics.
For both models, a batch size of 16 and 30 were utilized.

All models were trained in the PyTorch environment and
an SGD optimizer was used. Table 2 represents the training
hyper parameters.

Table 2. Training hyperparameters

Model Learning Decay Batch Size
Rate
YOLOV5 0.01 0.0005 16/30
YOLOv7 0.01 0.0005 16/30
YOLOV8 0.01 0.0005 16/30

3.5 Evaluation Metrics

Precision is the degree to which a model successfully
identifies the goals for which it was trained. In comparison to
the number of favorable occurrences witnessed, this statistic
reveals how successfully the forecasts were made. Conversely,
recall assesses the accuracy with which a model identifies all
pertinent samples within a dataset. How many instances of good
things in the dataset are measured by the optimistic prediction-
to-actual-data ratio.

This study uses Average Precision (AP), a summary of the
Precision-Recall (PR) curve [20, 21], to evaluate the
performance of a model. A high accuracy rating indicates that
the model's object classification is quite trustworthy. The
model's performance may be illustrated by constructing a PR
curve with the help of recall and accuracy values.
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The area under the curve (AUC) is a representation of the
precision-recall (PR) curve, and the letter "P" stands for it. The
average precision (AP) metric may be calculated using
Equation 1. The number of thresholds employed in this
equation is represented by the variable n. For every precision or
recall value, the difference between the current and next recall
values has to be taken into account in order to calculate AP.
Multiplying the disparity by the Interpolated Precision (IP)
value is the next step.

For each given recall value (R), the maximum accuracy
that may be achieved is known as Interpolated accuracy (IP)
when the matching recall value is equal to or higher than R. For
each cutoff, the AP is calculated by adding the recall and
accuracy values, with each entry serving as a weight.

AP = Y¥=0R(k) — R(k + 1)] x IP(k) 1)

The Mean Average Precision (mAP) is an additional important
metric that is calculated using Equation 2 and the AP values for
each class. The variable n in this equation represents the number
of types.

mAP = — Tz AP, )

4. RESULTS ANALYSIS

4.1 Findings

Table 3 shows the results for all the YOLO models used in
this study.

Table 3. Results of all the YOLO models used

Model Bqtch Mask  Gloves Biohazard mAP
Size AP AP AP

YOLOV5s 16 945 80.8 63.8 79.7
30 93.7 81.8 69.9 81.8

YOLOV5m 16 93.3 77.9 63.9 78.4
30 93.6 81.6 52.0 75.7

YOLOVSI 16 92.6 80.9 65.0 79.5
30 95.2 81.7 65.1 80.7

YOLOV5x 16 93.8 80.0 50.1 77.6
30 93.1 82.8 66.3 80.7

YOLOV7 16 96.1 76.8 67.5 80.2
30 93.9 78.8 67.6 80.1

YOLOV7x 16 95.4 81.0 62.1 79.5
30 95.7 88.1 60.7 815

YOLOVS8s 16 92.6 83.2 62.6 79.5
30 90.9 75.5 66.4 77.6

YOLOV8m 16 92.2 82.8 55.3 77.1
30 90.1 83.2 73.8 82.4

YOLOVSEI 16 92,5 76.2 61.8 76.8
30 93.2 79.2 70.3 80.9

YOLOV8x 16 91.8 77.0 65.8 78.2
30 93.6 773 62.0 e

Figure 3 provides a comprehensive analysis of the
performance of various YOLO architectures for surgical waste
detection evaluated with batch size of 16. The results are
estimated based on the average precision (AP) for each class
(mask, gloves, and biohazard) as well as the mean average
accuracy (mAP), which is an overall measure of the models'
performance.

@ Batch Siz

i

om YOLOVS! YOLOVSx YOLOV7 YOLOV7x YOLOV:

e @ MaskAP @ Gloves A

Fig. 3. Comprehensive Performance of Batch 16

When it came to masks, the top three YOLOVS5 series were
YOLOV5s (94.5% AP), YOLOvV5m (93.3% AP), and YOLOV5I
(92.6% AP). In terms of gloves AP, however, YOLOV5I came
out on top with a whopping 80.9%. With an AP of 59.1%,
biohazard detection was the worst of the three areas where
YOLOv5x performed poorly. In terms of overall mAP,
YOLOV5s was the best at 79.7 percent.

With an impressive AP of 96.1% for masks and
competitive performance in identifying biohazards and gloves,
YOLOV7 produced remarkable results. In addition, YOLOv7x
has shown remarkable performance with a 95.4% success rate.
The mean absolute percentage (mAP) for both models was
79.5%.

The anchor-free YOLOV8 series, YOLOv8s made an
astounding 83.2% gloves AP and YOLOv8m was competitive
across the board. Lowest AP for gloves was achieved by
YOLOvV8I (76.2%), but YOLOv8x and YOLOv8I both had
lower AP values. In YOLOv8 models, mAP values varied
between 76.8% and 79.5%.

The results demonstrate that different YOLO architectures
have varying capacities in detecting specific classes. YOLOv7
performed exceptionally well when seeing masks, whereas
YOLOVSs excelled at identifying mittens. However, there is a
trade-off between the performance of various classes, with
some architectures performing exceptionally well in one
category but relatively poorly in others.

Figure 4 provides a comprehensive analysis of the
performance of various YOLO architectures for surgical waste
detection evaluated with a batch size of 30.

o @ maskaP @ Glow

J

Fig. 4. Comprehensive Performance of Batch 30
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Among the YOLOV5 series, YOLOV5I had the best
performance in mask detection with an AP of 95.2%. YOLOV5s
had the best AP for biohazards at 69%, while YOLOvV5x had
the best AP for gloves at 82.8%. The mAP for all YOLOV5
models varied between 75.7% and 81.8%.

When comparing YOLOV7 to YOLOv7x, the results were
competitive. YOLOvV7x's 88.8% AP was the most of any glove,
while YOLOVT's 93.9% AP was the highest of any mask. Both
models demonstrated comparable biohazard detection abilities,
with mAPs of around 80.1% and 81.1%, respectively.

No class in the anchor-free YOLOVS series did better than
YOLOvV8m. Its accuracy percentages were 83.2% for gloves,
73.8% for biohazards, and 82.4% overall. YOLOVS8s had the
lowest performance in gloves AP at 75.5%, in contrast to
YOLOv8I's outstanding mAP of 80.9% and competitive
performance throughout all categories. When it came to
accuracy, YOLOv8x was on par across the board, scoring
77.7%.

The results show that different courses had different levels
of success with YOLO frameworks. Models vary in their ability
to identify certain objects; for instance, YOLOv8m is more
adept at detecting gloves than YOLOv5s is at detecting
biohazards. Choosing the right YOLO design requires careful
consideration of the unique requirements and objectives of
surgical waste detection.

This comprehensive data analysis allowed to compare the
YOLO designs and brings out the pros and cons of each model.
Researchers may employ this data to develop an appropriate
YOLO design based on the particular objectives and aims of
surgical waste detection.

10
I|
bt h‘—xﬂ_‘
—
0.8 Ll—‘ T
o
J - A
Ny \
—. N
06 h 5
\\\L“ \
E — \1
4 1
0.4 \l I'I
0.2 —— mask
gloves b
biohazard I
e gl classes 0.92 at 0.000
0.0
0.0 0.2 0.4 0.6 HE:] 1.0

Confidence

Fig. 5. YOLOVS5s (B30) Recall curve

0.81)

0.6

0.2
mask

gloves
—— biohazard
= all classes 0.91 at 0.000

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Configence

Fig. 6. YOLOV5m (B16) Recall curve

1.0
0.8

06

—— mask
gloves
biohazard

= 3|l classes 0.92 at 0.000

0.0 0.2 0.4 0.6 08 1
Confidence

Fig. 7. YOLOVSI (B30) Recall curve

0.2

mask
gloves
— bichazard
= all classes 0.86 at 0.000

0.0
0.0 02 0.4 0.6 (i} :] 1.0

Confidence

Fig. 8. YOLOV5x (B30) Recall curve



1.0

0.8 4—,

0.6

04

029 — mask
gloves

—— biohazard
m— all classes 0.95 at 0.000
0.0
0.0 02 04 06 g
Confidence

Shakib Sadat Shanto et al./ Malaysian Journal of Science and Advanced Technology

08

06

[ ]

0.2 — mask

Fig. 9. YOLOV7 (B16) Recall curve

‘\.
— gloves Y
~—— biohazard \
—— all classes 0.91 at 0.000 \
00 ;
0.0 02 04 06 0.8 10
Confidence

Fig. 12. YOLOV8m (B30) Recall curve

g

10
-
—
——_
_\"-.
08] e L\
‘\\. .\.‘I
A
- \
. \
0.6 L \
|
~ .
\ |
1
0.4
\ 1
R\
0.2 5 1
—— mask \
—— gloves
—— biohazard

= all classes 0.96 at 0.000
o0
0.0 0.2

04 0.6 og
Confidence

Fig. 10. YOLOV7x (B30) Recall curve
10

-\__ \\
. .
0.6 4 X \
_ I_““-\_\ H\L
"
N\ \
; — \
04 \\\ \
3 \
I.I'. l.I
N '-I
0.2 —— mask \ 1|
—— gloves L-, |I
~——— biohazard (1 1)
m— |l classes 0.91 at 0.000 ".,_ ~
0.0 e
0.0 0.2 0.4 0.6 0.8 1.0
Confidence
Fig.

11. YOLOVSs (B16) Recall curve

1.0
-
_— .__\_‘\
0.8 N T~
1 ﬁ_\\\
1
: \
0.6 ' — .H
T |
N i
R
0.4 = |I
1
l
L\
W
il
0.2 !
mask |
gloves \
—— biohazard {
= all classes 0.90 at 0.000 |
0.0 T 4 T T
0.0 0.2 0.4 0.6 0.8
Confidence

Fig. 13. YOLOV8I (B30) Recall curve

gloves \
- biohazard
m— gl classes 0.93 at 0.000
0.0
0.0 02 0.4 0.6 0.8
Corfidence

Fig. 14. YOLOVS8x (B16) Recall curve

1.0



Shakib Sadat Shanto et al./ Malaysian Journal of Science and Advanced Technology 7

4.2 Discussions

This research uses the MSG dataset to compare and
contrast different YOLO topologies. The results are laid out in
the table that follows. With an overall mAP of 81.8% when
tested with a batch size of 30, the YOLOv5-architecture
outperformed the other YOLOvV5 models. Compared to
YOLOvV7, YOLOV7-x fared substantially better with an overall
mMAP score of 81.5%. At a batch size of 30, the YOLOv8-m
architecture achieved an overall map score of 82.4%, which was
also the highest score of all the models, making it the most
performant of the YOLOv8 models.

Different YOLO models have different strengths and
weaknesses when it comes to detecting surgical waste. When it
comes to identifying gloves and masks, YOLOv5s performs
admirably, and its accuracy remains high throughout both batch
sizes. Having said that, its biohazard detection AP isn't great.
While YOLOv5m performs adequately when testing for masks
and gloves, it fails miserably when testing for biohazards. With
its exceptional accuracy, YOLOVS5I not only recognizes gloves
and biohazards, but also masks. Masks are YOLOV5x's strong
suit, not gloves or biohazards. While YOLOv7 does a
respectable task at detecting mask and gloves, it isn't always in
particular suitable at detecting biohazards. In terms of glove
detection, YOLOvV7x excels, but in relation to masks and
biohazard detection, it falls a way short. Despite its stable
overall performance with biohazards and mask, YOLOVS:s fails
to meet expectations with regards to gloves. In assessment to its
advanced overall performance whilst checking out gloves and
biohazards, YOLOv8m's AP is decrease when testing masks. It
outperforms all different models in terms of mAP. When it
involves identifying mask, YOLOVSI does a respectable task,
but in terms of biohazards and gloves, it has hassle. While
YOLOvV8x is not perfect, it performs a first-rate activity in
maximum classes except for biohazard identification and
gloves. Prior to selecting a way to as it should be become aware
of surgical waste, weigh the professionals and cons of every
kind.

4.3 Comparison of the Study

The approach, with previous related studies, is shown in
Table 4.

Table 4. Comparison with previous studies

AUTHOR DETECTION ANCHO ANCHOR- BEST mAP
CRITERIA R- FREE MoDEL
BASED METHOD
METHO
D
[22] Vehicle YES NO YOLOvV5 28.70%
Detection X
[23] Protective YES YES YOLOX- 89.84%
equipment m
detection
[24] Garbage YES NO YOLOvV3 59.57%
Detection
[25] Unsafe YES NO YOLO- 76.70%
Behavior AW
Detection
[26] Traffic Sign YES NO YOLOv4 99.98%
Recognition
[8] Surgical YES YES YOLOX 92.49%
Waste L
detection
[27] Face Mask YES NO YOLOv4 98.30%
Detection
Ours Surgical YES YES YOLOV8 82.40%
Waste m

detection

4.4 Real-time observation

The best model (YOLOV8-m with a confidence rate of
0.25) is implemented on a video to check how it performs in
real-world scenarios. The results are depicted in Figure 15.

Laurent Lombard/Opération Mer Propre

asmasks and latex gloves 2
are now frequently found SEESEIEEEES
in the sea. : ; (gt

The,. -
Guardian

e d

biohazard 0.29

] \ .

Laurent Lombard/Operation Mer Propre

GuTalllrtiliun

mask 0.51
(G N
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Fig. 15. Results of real-time observation

It is clear from the screenshots that the model was
successful in accurately identifying the majority of the classes.
However, specific problems were discovered, such as the fact
that it incorrectly identified blue items as gloves and that it was
unable to distinguish between gloves and masks. Additionally,
the dataset includes many photos of underwater waste, which
may contribute to the model's improved performance in
recognizing surgical wastes buried underwater.

5. LIMITATIONS AND FUTURE RESEARCH

DIRECTIONS

The YOLOvV8-m architecture can identify surgical waste
on the MSG dataset, according to this study. However, there are
major limitations that prevent it from being used to build
automated systems for medical waste sorting and disposal.
Specifically, the MSG dataset does not include all of the
complex real-world scenarios that may be encountered because
of different camera angles, occlusions, and illumination.
Because of this, YOLOvV8-m's recognition accuracy could be
compromised in difficult settings where the training data was
not available, for example, in situations where there are
obstructions or shadows produced by cluttered backgrounds.
Possible difficulties in accurately sorting medical waste may
arise from the algorithm's inability to consistently differentiate
between seemingly identical classifications, such as masks and
gloves. Given that testing was conducted on a small dataset of
1,153 pictures, it is imperative that bigger and more realistic
datasets drawn from actual clinical scenarios undergo more
comprehensive evaluation. Due to the model's inability to
generalize to novel types of trash, detection accuracy may
suffer when exposed to more recent types of trash. Since
overlapping waste items and severe occlusions can greatly
reduce detection accuracy, more robust approaches to
specifically handle occlusions are also essential. Variations in

camera angle and distance from the garbage cans may also
affect the final product.

There are some potential areas for further research in
surgical waste identification. To assess the performance of
various deep learning architectures in surgical waste
identification, future studies may look into YOLO alternatives,
such as Faster R-CNN, SSD. Moreover, integrating the surgical
waste detection system with automated waste management
systems might be the subject of future research. This would
allow for the development of comprehensive solutions that
efficiently separate, dispose of, and monitor surgical
waste. Additionally, future studies in this field might use varied
datasets to make surgical waste detection models more
generalizable and resilient, so they work better in a variety of
real-world settings.

6. CONCLUSION

The examination of the MSG dataset is concluded by
contrasting various YOLO-based architectures. According to
the results, mAP was increased by 82.4% using anchor-free
YOLOvV8-m and a group size of 30. The findings will enhance
the design of automated systems, thereby reducing the risk of
infection for both patients and medical personnel. This study
focuses solely on YOLO-based architectures, omitting
additional deep-learning methodologies and conventional
methods for detecting surgical waste. In addition, the
performance evaluation is conducted with a limited data set that
may not represent the vast array of surgical waste encountered
in usage. Additional research is necessary to fill in these voids
and learn everything there is to know about locating and
disposing of surgical refuse. Future research in this area may
utilize other datasets to improve the precision and dependability
of surgical waste detection. Further studies could also
investigate integrating the surgical waste detection system with
waste management systems. Moreover, researching and
comparing the performance of other deep learning methods and
conventional techniques for detecting surgical waste can be an
excellent addition to this study. This would make waste
separation, disposal, and monitoring more efficient, assuring
proper management and compliance with regulations. In
addition, as the requirements for medical waste management
tend to evolve, it would be beneficial to examine how the
selected YOLO architecture performs in a real-world healthcare
setting. This type of research could evaluate the system's
efficacy in the real world and identify potential limitations.
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