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1. INTRODUCTION 
The IoT has advanced significantly in recent years. It 

describes the real world as an extensive network of objects 
with a digital identity. These devices, including sensors, 
actuators, mobile phones, televisions, light bulbs, thermostats, 
medical equipment, smart watches, software, and other items, 
may need to be bigger and bigger. IoT is a concept that 
involves an exponentially expanding spectrum of physical 
items connected to the internet [1]. According to [2], IoT is 
growing quite quickly and is currently used in many different 
fields like education, health, and agriculture (e.g., [3]). By 
2025, connected devices are predicted to increase daily to 30.9 
billion. IoT network traffic has rapidly increased because of 
this phenomenon.  

IoT devices continue to have severe risks despite their 
widespread use, including, for example, exposed network 
services, a lack of encryption or access control, and inadequate 
protection for sensitive data. As a result, attacks on IoT 
devices are increasing quickly, and technologies that can 

identify assaults are urgently needed to respond and 
implement remedies [4]. IoT refers to gadgets, buildings, and 
structures that use connected devices, sensors, and actuators. 
IoT devices find a growing number of applications as sensors 
and storage for data, and the Internet has become increasingly 
affordable, quick, and integrated. Since many diverse traffic 
classes and a lot of network traffic flow through IoT networks, 
such as those produced by industrial machinery, driverless 
cars, health sensors, smart homes, and other vital devices, this 
interaction presents significant difficulties. As a result, the 
needs of different IoT applications necessitate more security 
and protection, which requires accurate network traffic 
classification to detect assaults earlier and take appropriate 
countermeasures. Given the widespread use of IoT devices, 
malevolent manipulations could significantly impact the 
stability and security of the entire Internet [5]. The Mirai 
malware's strike serves as a crystal-clear illustration of the 
severity that results from using zombie IoT devices (bots) to 
launch a more significant DDoS attack and attests to the need 
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ability to detect intrusions using the CIC-IoT2023 dataset. The FNN achieved excellent 
accuracy, an F1 score, and a precision score, which are encouraging results. This shows the 
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for secure authentication mechanisms and appropriate traffic 
categorization algorithms [6, 7]. 

According to [8], IoT systems' complex and linked nature 
makes it more challenging to provide all-encompassing 
security. Additionally, there is a considerable risk due to the 
physical frailty of IoT devices in unmonitored situations. 
Intruders can take advantage of this weakness. Concerns 
regarding data privacy are increased by the vulnerability of the 
wireless networks linking IoT devices to eavesdropping and 
illegal access. If not adequately protected, the massive amount 
of data produced by IoT devices also presents privacy 
concerns, and combining IoT with other technologies makes it 
more difficult to ensure security and privacy across several 
systems. In addition, IoT devices' limited processing and 
power capabilities make it difficult to strike the right balance 
when installing comprehensive security measures. It is crucial 
to address these complex difficulties to guarantee IoT systems' 
safe and secure deployment across multiple areas. The IoT 
scenario entails the internet-based interconnection of a wide 
range of physical items and systems, giving them connectivity, 
software, and sensors to gather and exchange data [9]. 

 

Fig. 1. IoT Layers Architecture 

According to [10], Fig. 1 illustrates various IoT layer 
stack suggestions for the IoT architecture. Researchers have 
proposed different architectures with 3, 4, 5, and 7 layers (or 
levels). 

 

Fig. 2. CISCO’s IoT Reference Model (source: [11]) 

Fig. 2 indicates [11] that the IoT reference model consists 
of seven distinct layers, each serving a particular purpose 

within the IoT ecosystem. At Level 1, physical devices and 
controllers represent tangible IoT components capable of data 
creation and conversion. Level 2, or the connectivity layer, 
uses protocols, routing, security, and analytics to guarantee 
dependable device-to-network communication. Edge (Fog) 
Computing, which does data processing close to the network 
edge, is introduced in Level 3. This includes data filtering, 
aggregation, inspection, thresholding, and event production. 
Data in motion is converted into data at rest at Level 4 and 
organized for further processing and query-based computing. 
Level 5, Data Abstraction, offers data virtualization and 
consolidation while streamlining data access by balancing 
diverse formats, semantics, sources, and security 
considerations. Level 6, the application level, analyzes data for 
purposes, varies between vertical markets, and provides 
consumers with helpful information.  

Finally, Level 7, Collaboration and Processes, involves 
people and corporate processes and facilitates value creation 
through communication and collaboration. At all levels, 
security is prioritized, and the IoT Reference Model 
incorporates security features, including identity management, 
authentication, and encryption to provide complete security. 
This framework provides a formal understanding of the 
structure and functions of the IoT system and seeks to 
standardize language, ease communication, and foster 
collaboration within the IoT sector. This IoT reference 
architecture divides the IoT ecosystem into multiple tiers, each 
with unique functions and monitoring points, providing a solid 
foundation for IoT threat detection. Due to the granularity, 
precise and focused monitoring is possible, making identifying 
anomalies and potential security risks simpler. Edge (Fog) 
computing is also included, ensuring real-time analysis at the 
network edge and allowing for quick detection of questionable 
activity closer to its source. The model focuses on security 
measures at all levels, from identity management to 
encryption, and offers numerous layers of protection against 
attackers. Additionally, the approach promotes more efficient 
threat detection and response by unifying nomenclature and 
facilitating data correlation across layers. This reference 
model encourages a thorough strategy for IoT security and 
improves the ability to identify and stop IoT-related assaults 
quickly. 

On the other hand, real-time data analysis (such as [12] 
and [13]) can be applied for detection purposes. Also, deep 
learning is a proven approach for building prediction models 
such as [14].  Using FNN in the context of IoT threat detection 
with a large dataset offers several benefits. FNNs provide a 
simple, practical design that can scale up to meet the 
requirements of an extensive dataset. In the dynamic 
environment of IoT security, their capacity for generalization 
across many attack methods is precious. 

Additionally, FNNs are exceptional at automatically 
extracting pertinent features from complicated data, 
eliminating the need for time-consuming manual feature 
engineering. FNNs can also use parallel processing, using 
contemporary GPUs and distributed computing frameworks to 
quicken training times. The complexity of the attacks, 
potential data preparation needs, and the accessibility of 
computational resources must all be considered. FNNs are a 
good contender for IoT threat detection. Still, it's important to 
carefully compare different deep learning architectures to 
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determine which is best for the given dataset and security 
objectives. 

This research ensures that the approach and findings are 
understood. Following the introductory overview, go to the 
'Related Works' section, which includes noteworthy research 
and approaches used in IoT cyber-attacks. This study seeks to 
create an effective Intrusion Detection System (IDS) for IoT 
contexts using Feedforward Neural Networks (FNNs). This 
involves a comprehensive analysis of the CIC-IoT2023 dataset 
to recognize essential characteristics conducive to risk 
detection on IoT devices. Measurement of the given IDS 
effectiveness by various means is part of this research, thus 
guaranteeing its robustness and confidence. Applying edge 
computing techniques to tackle IoT problems related to safety 
and having complete secure controls are, among other things, 
taken care of in this work. The 'Methods and Materials' section 
follows, providing an in-depth explanation of the approach, 
including an overview of the dataset, how the model was used, 
the assessment criteria used, and the processes followed to 
assess the model's performance. The 'Results and Analysis' 
section details the findings, including model-specific 
evaluation metrics, learning curves, confusion matrices, ROC 
curves, and precision-recall curves. The 'Conclusion' section 
comprehensively appraises the investigation, including its 
implications, limitations, and recommendations for future 
scholarly research in this field. 

 

2. RELATED WORKS 
The authors of [15] suggest deep learning models based 

on convolutional neural networks (CNNs) and long short-term 
memory (LSTM) networks for identifying DDoS attacks in 
IoT networks. These models have a high accuracy of 97.16% 
after training on the most recent CIC-IDS2017 datasets. Deep 
learning models outperform conventional machine learning 
methods in terms of accuracy. These models can automatically 
learn from unstructured and diverse data, extract features, 
adjust to shifting network conditions, and identify novel attack 
types. The authors propose creating new deep-learning 
architectures and training techniques to address open research 
issues in IoT cybersecurity.  

In [16], researchers used the IoT-23 dataset, which 
comprises network traffic information from both malware-
infected Raspberry Pi devices and benign IoT devices, to 
undertake an experimental evaluation. To identify attacks on 
IoT devices, they suggested a hybrid deep learning model that 
focuses on dynamic analysis of attacks by running malicious 
binary files on devices and observing network traffic. In this 
novel method, op-code sequences were chosen as features for 
classification, and feature graphs were made to show the 
connections between features and samples. They used deep 
Eigenspace learning to decrease the dimensionality of the 
feature space and improve classification accuracy. An 
empirical analysis showed that junk code insertion assaults 
may be detected with 98% accuracy. The study's 
shortcomings, which are encouraging but call for further 
validation on more extensive and more diverse datasets for 
real-world applicability, include a tiny and self-manufactured 
dataset. In conclusion, the hybrid Deep Learning Model 
developed by the authors provides a viable way to increase 
IoT device security by effectively exploiting IoT-generated 
data.  

The application of distributed deep learning techniques 
for IoT threat detection was applied by [17], but they need to 
provide the research dataset. It does, however, refer to 
numerous datasets that are frequently used for assessing 
intrusion detection systems. A CNN model achieved an 
accuracy of 0.9430 in an IoT micro-security add-on, and 
RNN-LSTM achieved mean accuracy ranging from 73.21% to 
97.84% in various subsets of the Mirai and Gafgyt botnets, 
according to the article, which provides comprehensive 
accuracy data for numerous models. Data gathering from IoT 
devices, training deep learning models on a back-end server, 
and actual time implementation for attack detection are all 
components of the suggested method for IoT attack detection. 
This method uses both the processing power of IoT devices 
and servers. The authors claim their approach has promised to 
identify developing IoT assaults, especially those leveraging 
encrypted traffic for escape. However, potential limitations 
and hurdles include the requirement for strong encryption and 
privacy safeguards.  

Authors of [18] examined the use of the Bot-IoT dataset 
produced at the Australian Centre for Cyber Security (ACCS) 
to evaluate the use of machine learning to detect cyber threats 
within IoT networks. This dataset, which includes valid traffic 
and numerous attack types like probing denial-of-service 
attacks and information theft, is essential for teaching machine 
learning algorithms to distinguish between genuine and 
malicious network activity. The approach used by the authors 
included extensive data processing steps, feature extraction 
using CICFlowMeter, and the application of seven different 
machine learning algorithms, including KNN, ID3, quadratic 
discriminant analysis (QDA), Random Forest, AdaBoost, 
multilayer perceptron (MLP), and Naive Bayes (NB). 
Adaboost, which achieved 100% accuracy, precision, recall, 
and F-measure, was the best-performing algorithm, with KNN 
and ID3 following behind with 99%.  

In addition to providing a foundation for more 
sophisticated and accurate detection systems, the study 
emphasizes the potential of machine learning to strengthen 
IoT network security and the importance of diversified 
datasets that include both legitimate and malicious traffic for 
efficient algorithm training. The authors' additional 
contributions to the IoT security literature include improving 
attack detection in IoT networks, refining feature selection to 
increase algorithm performance, and exploring the relatively 
new Bot-IoT dataset. This indicates that this study offers a 
thorough and insightful examination of machine learning's 
function in identifying cyberattacks within IoT networks, 
highlighting the importance of different training data.  

To improve the cybersecurity of computer numerical 
control (CNC) equipment, the article [19] presents a novel 
cybersecurity solution that combines deep learning algorithms 
with IoT devices. The authors separated the dataset into 
training and testing subsets by classifying a dataset of cutting 
signals recorded under various cutting settings into three 
groups. A deep neural network (DNN) model was assessed 
alongside conventional machine learning classifiers like KNN, 
artificial neural networks (ANN), and support vector machines 
(SVM), as well as ensemble learning techniques like random 
forest (RF) and eXtreme Gradient Boosting (XGBoost). The 
outcomes demonstrated the suggested DNN model's better 
performance, reaching a remarkable 99.47% classification 
accuracy on the test dataset. Precision and recall scores close 
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to one suggested reliable fake signal detection during 
cyberattacks. The model's superior detection abilities, 
particularly during attacks, were confirmed by performance 
evaluations using f1-scores and receiver operating 
characteristic (ROC) curves, with the maximum performance 
at 1.0. 

 

3. METHODS AND MATERIALS 
The overall methodological approach is discussed in this 

section, which is depicted in Fig. 3 as well. 

 

 

Fig. 3. Research Process 

As mentioned in Fig. 3, the deep learning process on the 
"CIC-IoT2023" dataset encompasses multiple essential steps. 
The process commences with pre-processing, wherein the raw 
data is subjected to cleansing, normalization, and 
transformation to verify its appropriateness for subsequent 
analysis. In the standardization phase, the data is modified to 
have a mean of 0 and a standard deviation 1. This process 
ensures that feature weights are consistent and reduces the 
influence of certain traits. Data cleaning is the process of 
eliminating or rectifying errors, corruptions, copies, and 
incorrectly formatted data to improve the overall quality of the 
data. Feature selection is a process that selects the most critical 
variables, which helps to reduce overfitting and improve the 
model's accuracy. The procedure continues with classification, 
utilizing the chosen features in an FNN model to classify or 
forecast the target variable. The FNN model's performance is 
evaluated through the Training and Testing phases, which 
involve using a portion of the data for training and evaluating 
the model on new data. Result Evaluation assesses the model's 
efficacy by employing diverse metrics such as precision, 
recall, F1 score, and accuracy, offering valuable insights into 
its performance. 

 

 

3.1 Dataset Overview 

This paper utilizes the publicly accessible CIC-IoT2023 
dataset [20], which comprises authentic network traffic from 
various IoT devices in typical and malicious conditions. The 
CIC-IoT2023 dataset was produced in collaboration between 
the Information Technology University of Copenhagen (ITU) 
and the Canadian Institute for Cybersecurity (CIC). A smart 
home environment comprising twenty IoT devices (cameras, 
thermostats, smart TVs, smart wearables, etc.) was simulated 
to create the dataset. Wireshark and TCPDump were utilized 
to capture network traffic for classification by Snort and 
Suricata intrusion detection systems. The dataset comprises 
ten days' worth of network traffic, consisting of five days of 
regular traffic and five days of attack traffic. The dataset 
consists of ten distinct varieties of DDoS attacks, namely 
MQTT Flood, CoAP Flood, WS-DDoS (WebSocket), Web 
Service Flood (SOAP), and Web Service Flood (RESTful), in 
addition to TCP SYN Flood, UDP Flood, HTTP Flood, HTTP 
Slow Post, Slowloris, MQTT Flood, CoAP Flood. The dataset 
comprises an estimated eighty million packets, of which 
sixteen million are deemed normal, and 64 million are 
classified as malicious. Each transmission in the dataset is 
accompanied by 115 characteristics, which comprise the 
source and destination IP addresses, protocol, payload size, 
and timestamp. The paper [13] executed the machine learning 
approach with the same dataset, where they analyzed various 
machine learning algorithms for the CIC-IoT2023 dataset. 
Besides, in [21], an LSTM-based deep learning approach is 
proposed based on this dataset. 

 

Fig. 4. Dataset Overview in terms of various cyber attacks 

The overall number of rows in the dataset and the 
corresponding attacks and their row counts are shown in Fig 4. 
A wide range of IoT threats thus threatens the availability and 
integrity of computer systems and networks in cybersecurity. 
Distributed Denial of Service (DDoS) attacks use several 
tactics, such as flooding assaults like UDP and ICMP Floods 
and fragmentation-based attacks. DoS attacks impair services 
by saturating one source with traffic. Attacks used for 
reconnaissance involve probing to find out about services and 
weaknesses. Web-based assaults target web programs with 
methods like SQL Injection and XSS. Brute force attacks 
employ a series of tests to gain unauthorized access. Spoofing 
refers to attacks that alter network traffic or fake entities. 
Finally, Mirai attacks employ tactics like GREIP Flood and 
UDPPlain attacks targeting IoT devices. Protecting digital 
assets and maintaining network stability from attacks presents 
unique challenges for security professionals. 
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Fig 5 presents a comprehensive dataset comprising 47 
different features that were painstakingly gathered from 
network traffic data and are used as the basis for in-depth 
analysis and categorization. These features cover a wide range 
of network characteristics, from the most basic like 
timestamps that show when packets were captured and flow 
durations that show how long communication sessions 
lasted—to the most complex—like protocol types, packet 
rates, and flag information that reveal the nature and degree of 
network activity. Furthermore, the examination of protocols 
like HTTP, HTTPS, DNS, TCP, UDP, ARP, and others makes 
it possible to identify communication patterns and services 
thanks to the presence of application, transport, and link layer 
protocol identification. Inter-arrival times (IAT) measure the 
time gaps between subsequent packets, and packet length 
statistics, which include aggregate metrics like total sum, 
minimum, maximum, average, and standard deviation, provide 
deep insights into the distribution of packet sizes within a 
flow. 

  

Fig. 5. Features from the network traffic 

The dataset's statistical measurements, including 
magnitude, radius, covariance, variance, and weight, provide 
complex statistical viewpoints that enable a detailed analysis 
of packet length distributions and their interactions. The 
dataset's usefulness extends to network performance analysis, 
making it possible to evaluate network performance measures. 
The combined effect of these elements is significant because it 
gives stakeholders the ability to enhance security protocols, 
optimize network performance, and guarantee the 
dependability and effectiveness of network communications. 
This dataset provides a cornerstone in the toolkit needed for 
thorough examination and classification of networking 
behavior, ultimately enhancing the robustness and 
dependability of contemporary network infrastructures. It 
facilitates tasks like network monitoring, detection of 
breaches, and traffic engineering. 

3.2 FNN 

Fig 6 visually illustrates the fundamental design of an 
FNN. According to [22], FNNs consist of three primary 
layers: the input, hidden, and output layers. In an FNN, the 
number of layers in the input and output layers is typically the 

same, while the number of hidden layers and neurons within 
them can vary based on specific requirements. Trial and error, 
guided by performance considerations, is often employed to 
determine the optimal configuration of hidden layers and 
neurons. The network's architecture maps inputs, represented 
by offsets δ1, δ2, and δ3, to outputs in the form of hinge 
angles α, β, and γ, using weighted connections between 
artificial neurons across different layers. During training, these 
weights are adjusted to effectively map inputs (the offsets of 
block centers) to outputs (corresponding hinge angles). Each 
artificial neuron within the FNN is characterized by an 
activation function, typically nonlinear, such as the tangent 
sigmoid or logarithmic sigmoid, which introduces the 
necessary nonlinearities for complex function approximation. 
It is worth noting that, following the Universal Approximation 
Theorem, a single hidden layer FNN with a finite number of 
neurons can estimate continuous functions on compact subsets 
of ℝn, where n is the number of inputs. However, determining 
the optimal FNN architectural configuration for a specific 
input-output relationship often requires a trial-and-error 
approach, considering factors like the number of hidden 
neurons and for training, utilizing the Mean Squared Error 
(MSE) as the performance metric and the Levenberg-
Marquardt (LM) backpropagation technique due to its high 
efficiency and second-order convergence rate, as documented 
in the literature [23, 24, 25]. 

 

Fig. 6. Architecture Model of a Feedforward Neural Network 
(FNN) (source: [22]) 

3.3 Evaluation Metrics 

The proposed model's evaluation matrices include 
accuracy, precision, recall, and F1-score, presented briefly 
below with their corresponding equations. 

Accuracy: The proportion of correctly categorized packets to 
all packets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
    (1) 

 

Precision: The proportion of harmful packets accurately 
identified relative to all malicious packets expected. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
    (2) 

Recall: The proportion of harmful packets that were 
accurately identified to all malicious packets. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     (3) 

F1-Score: The harmonic means of recall and precision. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

2
     (4) 

 

4. RESULTS AND FINDINGS 
This study advances network security by demonstrating 

how deep learning may improve intrusion detection while also 
offering a thorough analysis underpinned by a strict 70-30 data 
split and an instructive epoch learning curve. 

 

Fig. 7. Epoch curve of the proposed model 

Fig 7’s epoch learning curve shows FNN's training 
dynamics throughout 50 epochs. Notably, the curve shows 
quick convergence and consistent gains in validation and 
training accuracy, highlighting how well the model learned 
and generalized from the dataset. The trustworthiness of the 
IDS is confirmed by the near alignment of the two curves, 
which shows robust generalization without overfitting. 
Performance stabilizes after a certain point, indicating 
declining returns from further training. 

 

Fig. 8. Precision-Recall Curve of the proposed model 

Fig 8 indicates the curve's trajectory and sheds light on 
how well the model can categorize various types of network 
traffic. This paper's proposed IDS displays outstanding 
precision-recall characteristics for various typical attack types, 

including DDoS and DoS attacks, demonstrating its powerful 
detection skills. It also points up opportunities for 
improvement, particularly in classes with lower recall and 
accuracy values, indicating the need for additional model 
improvement for those risks. 

The confusion matrix shown in Fig 9, which classifies 
data instances into the true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) categories, is 
revealed by this matrix. These categories represent the model's 
capacity to accurately distinguish between positive and 
negative situations and its tendency for Type I (false positive) 
and Type II (false negative) errors. The matrix also measures 
performance indicators like recall, precision, and the F1-score 
for each class, enabling a detailed analysis of the IDS's 
capabilities for identifying specific threats. 

 

Fig. 9. Confusion Matrix 

Table 1. Evaluation matrices of the proposed FNN model 

Evaluation Matrices Output (Score) 

Accuracy 0.9807 

F1 Score 0.9786 

Recall Score 0.9807 

Precision Score 0.9799 

 
Table 1 indicates the assessment of our proposed IDS 

using rigorous testing and actual network traffic information. 
The accuracy, F1 score, recall score, and precision score of the 
performance metrics table highlight how well IDS can 
discriminate between legitimate and malicious network data. 
This paper’s system displays its ability to achieve a 
harmonious balance between accurately identifying network 
intrusions and avoiding false positives with an exceptional 
accuracy of 0.9807 and an F1 score of 0.9786. Additionally, 
the system's recall score of 0.9807 demonstrates its 
dependability in identifying genuine threats, and its precision 
score of 0.9799 indicates its accuracy in reducing false alerts. 

Table 2 presents a comparison and explains how different 
models for machine learning and deep learning compare in 



                                                Akinul Islam Jony et al./ Malaysian Journal of Science and Advanced Technology                                                 419 
    

terms of performance with our proposed Feedforward Neural 
Network (FNN) for IoT intrusion detection using the CIC-
IoT2023 dataset. 

Table 2. Comparison among various machine learning and 
deep learning approaches with our proposed FNN approach 

Evaluation 

Matrices 
Accuracy 

F1 
Score 

Recall 
Score 

Precision 
Score 

FNN 0.9807 0.9786 0.9807 0.9799 

LSTM 0.9875 0.9859 0.9875 0.9866 

Random Forest 0.9916 0.9909 0.9916 0.9913 

KNN 0.9380 0.9364 0.9380 0.9366 

Decision Tree 0.9919 0.9920 0.9954 0.9919 

Logistic Regression 0.8275 0.8034 0.8275 0.8473 

 

The FNN showed very high levels of accuracy with a 
score of (0.9807). The values obtained include an F1 score of 
(0.9786), a recall rate of (0.9807) and a precision rating of 
(0.9799). These results demonstrate the FNN's ability to 
differentiate between legitimate and malicious network data. 
By comparison, the author of [13, 21] applied the Long Short-
Term Memory (LSTM) approach using the same dataset and 
had superior accuracy (0.9875), F1 score (0.9859), recall 
(0.9875), and precision (0.9866).  

The Decision Tree model attained an accuracy of 0.9916, 
an F1 score of 0.9919, a precision of 0.9883, and 
demonstrated exceptional recall with a score of 0.9954. The 
Random Forest model was very accurate and precise, with 
accuracy and precision equal to (0.9916). On the other hand, 
the performance of k-Nearest Neighbours (KNN) and Logistic 
Regression models was lower than that of deep learning 
methods. Indeed, while FNN did not beat other top-
performing models in all metrics, it was more balanced by 
reducing false positive rates. Thus, it suits IoT security 
applications where simplicity, fastness, and effectiveness are 
key factors. 

 

5. CONCLUSION AND FUTURE WORK 
This study explores the crucial field of intrusion detection 

inside the developing IoT environment. With its exponentially 
growing number of physically connected IoT devices, network 
security faces both unmatched opportunities and difficulties. 
By building the analysis around an extensive dataset named 
CIC-IoT2023, a very recent dataset of different cyberattack 
kinds, and by picking an FNN model for intrusion detection. 
Through investigation and review produced encouraging 
findings. With a fantastic accuracy of 0.9807 and an F1 score 
of 0.9786, the FNN successfully distinguished between 
legitimate and malicious network traffic. With a recall score of 
0.9807, demonstrating its robustness in recognizing actual 
threats, and a precision score of 0.9799, emphasizing its 
precision in decreasing false positives, this emphasizes the 
system's ability to strike a balance among identifying network 
intrusions and limiting false alarms. These results demonstrate 
the usefulness of the IDS in protecting IoT ecosystems, with 
significant consequences for network security experts and 
researchers. 

It's essential to recognize the limits of this study, though. 
The dataset's specific properties may impact the model's 
performance even though it is comprehensive and may not 
cover all potential IoT attack scenarios. Future studies may 
also improve the model's performance and investigate real-
time detection capabilities. Collaboration among cybersecurity 
experts may enhance the sturdiness and scalability of intrusion 
detection systems in the constantly changing IoT environment. 

Future work will be impacted by the inevitably new attack 
avenues that IoT technological improvements will bring forth, 
demanding continued research and advancement in intrusion 
detection systems. Additionally, using anomaly detection 
methods and adding more complex characteristics could 
improve the IDS's precision and recall even more. 
Additionally, to confirm the system's efficacy in real-world 
circumstances, real-world implementation and testing in 
various IoT environments are essential. This study is a 
significant step toward strengthening IoT security through 
efficient intrusion detection. Creating dependable and flexible 
security solutions is crucial as the IoT expands quickly. This 
study contributes to this ongoing effort by providing a solid 
framework for the defense of IoT ecosystems against various 
cyber threats. 

 

DATASET AVAILABILITY STATEMENT 
The dataset used in this study can be found at 

https://www.unb.ca/cic/datasets/iotdataset-2023.html 
[accessed on 12 November 2023]. 
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