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1. INTRODUCTION

ABSTRACT

A new era of connectedness has been ushered in by the increasing number of Internet of
Things (loT) devices, which present both enormous security issues and limitless
opportunities for creativity. With the use of a deep learning-powered intrusion detection
system (IDS), this research aims to improve 10T security. An extensive dataset of different
cyberattack kinds was used to train and test a Feedforward Neural Network (FNN) for its
ability to detect intrusions using the CIC-10T2023 dataset. The FNN achieved excellent
accuracy, an F1 score, and a precision score, which are encouraging results. This shows the
system's capability to differentiate between legitimate and fraudulent network traffic and
illustrates its potential value in protecting loT ecosystems. However, there are certain
restrictions, such as the necessity for continuing optimization and the representativeness of
the dataset. This research provides knowledge regarding the efficiency of deep learning-
based IDS, which is an essential step toward strengthening 10T security. This work lays the
groundwork for continued initiatives to guarantee the reliability and safety of linked loT
devices in a constantly shifting threat environment as the 10T environment develops.

© 2024 The Authors. Published by Penteract Technology.
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

identify assaults are urgently needed to respond and

The 10T has advanced significantly in recent years. It
describes the real world as an extensive network of objects
with a digital identity. These devices, including sensors,
actuators, mobile phones, televisions, light bulbs, thermostats,
medical equipment, smart watches, software, and other items,
may need to be bigger and bigger. 10T is a concept that
involves an exponentially expanding spectrum of physical
items connected to the internet [1]. According to [2], 10T is
growing quite quickly and is currently used in many different
fields like education, health, and agriculture (e.g., [3]). By
2025, connected devices are predicted to increase daily to 30.9
billion. 10T network traffic has rapidly increased because of
this phenomenon.

loT devices continue to have severe risks despite their
widespread use, including, for example, exposed network
services, a lack of encryption or access control, and inadequate
protection for sensitive data. As a result, attacks on loT
devices are increasing quickly, and technologies that can
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implement remedies [4]. 10T refers to gadgets, buildings, and
structures that use connected devices, sensors, and actuators.
loT devices find a growing number of applications as sensors
and storage for data, and the Internet has become increasingly
affordable, quick, and integrated. Since many diverse traffic
classes and a lot of network traffic flow through loT networks,
such as those produced by industrial machinery, driverless
cars, health sensors, smart homes, and other vital devices, this
interaction presents significant difficulties. As a result, the
needs of different loT applications necessitate more security
and protection, which requires accurate network traffic
classification to detect assaults earlier and take appropriate
countermeasures. Given the widespread use of 10T devices,
malevolent manipulations could significantly impact the
stability and security of the entire Internet [5]. The Mirai
malware's strike serves as a crystal-clear illustration of the
severity that results from using zombie 10T devices (bots) to
launch a more significant DDoS attack and attests to the need
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for secure authentication mechanisms and appropriate traffic
categorization algorithms [6, 7].

According to [8], IoT systems' complex and linked nature
makes it more challenging to provide all-encompassing
security. Additionally, there is a considerable risk due to the
physical frailty of loT devices in unmonitored situations.
Intruders can take advantage of this weakness. Concerns
regarding data privacy are increased by the vulnerability of the
wireless networks linking loT devices to eavesdropping and
illegal access. If not adequately protected, the massive amount
of data produced by loT devices also presents privacy
concerns, and combining 10T with other technologies makes it
more difficult to ensure security and privacy across several
systems. In addition, 10T devices' limited processing and
power capabilities make it difficult to strike the right balance
when installing comprehensive security measures. It is crucial
to address these complex difficulties to guarantee 10T systems'
safe and secure deployment across multiple areas. The loT
scenario entails the internet-based interconnection of a wide
range of physical items and systems, giving them connectivity,
software, and sensors to gather and exchange data [9].

loT Architectures
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Fig. 1. 10T Layers Architecture

According to [10], Fig. 1 illustrates various 10T layer
stack suggestions for the loT architecture. Researchers have
proposed different architectures with 3, 4, 5, and 7 layers (or
levels).
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Fig. 2. CISCO’s IoT Reference Model (source: [11])

Fig. 2 indicates [11] that the IoT reference model consists
of seven distinct layers, each serving a particular purpose

within the 10T ecosystem. At Level 1, physical devices and
controllers represent tangible loT components capable of data
creation and conversion. Level 2, or the connectivity layer,
uses protocols, routing, security, and analytics to guarantee
dependable device-to-network communication. Edge (Fog)
Computing, which does data processing close to the network
edge, is introduced in Level 3. This includes data filtering,
aggregation, inspection, thresholding, and event production.
Data in motion is converted into data at rest at Level 4 and
organized for further processing and query-based computing.
Level 5, Data Abstraction, offers data virtualization and
consolidation while streamlining data access by balancing
diverse  formats, semantics, sources, and security
considerations. Level 6, the application level, analyzes data for
purposes, varies between vertical markets, and provides
consumers with helpful information.

Finally, Level 7, Collaboration and Processes, involves
people and corporate processes and facilitates value creation
through communication and collaboration. At all levels,
security is prioritized, and the loT Reference Model
incorporates security features, including identity management,
authentication, and encryption to provide complete security.
This framework provides a formal understanding of the
structure and functions of the loT system and seeks to
standardize language, ease communication, and foster
collaboration within the 10T sector. This loT reference
architecture divides the 10T ecosystem into multiple tiers, each
with unique functions and monitoring points, providing a solid
foundation for 10T threat detection. Due to the granularity,
precise and focused monitoring is possible, making identifying
anomalies and potential security risks simpler. Edge (Fog)
computing is also included, ensuring real-time analysis at the
network edge and allowing for quick detection of questionable
activity closer to its source. The model focuses on security
measures at all levels, from identity management to
encryption, and offers numerous layers of protection against
attackers. Additionally, the approach promotes more efficient
threat detection and response by unifying nomenclature and
facilitating data correlation across layers. This reference
model encourages a thorough strategy for loT security and
improves the ability to identify and stop loT-related assaults
quickly.

On the other hand, real-time data analysis (such as [12]
and [13]) can be applied for detection purposes. Also, deep
learning is a proven approach for building prediction models
such as [14]. Using FNN in the context of 10T threat detection
with a large dataset offers several benefits. FNNs provide a
simple, practical design that can scale up to meet the
requirements of an extensive dataset. In the dynamic
environment of loT security, their capacity for generalization
across many attack methods is precious.

Additionally, FNNs are exceptional at automatically
extracting pertinent features from complicated data,
eliminating the need for time-consuming manual feature
engineering. FNNs can also use parallel processing, using
contemporary GPUs and distributed computing frameworks to
quicken training times. The complexity of the attacks,
potential data preparation needs, and the accessibility of
computational resources must all be considered. FNNs are a
good contender for 10T threat detection. Still, it's important to
carefully compare different deep learning architectures to
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determine which is best for the given dataset and security
objectives.

This research ensures that the approach and findings are
understood. Following the introductory overview, go to the
'Related Works' section, which includes noteworthy research
and approaches used in 10T cyber-attacks. This study seeks to
create an effective Intrusion Detection System (IDS) for loT
contexts using Feedforward Neural Networks (FNNs). This
involves a comprehensive analysis of the CIC-10T2023 dataset
to recognize essential characteristics conducive to risk
detection on loT devices. Measurement of the given IDS
effectiveness by various means is part of this research, thus
guaranteeing its robustness and confidence. Applying edge
computing techniques to tackle 10T problems related to safety
and having complete secure controls are, among other things,
taken care of in this work. The 'Methods and Materials' section
follows, providing an in-depth explanation of the approach,
including an overview of the dataset, how the model was used,
the assessment criteria used, and the processes followed to
assess the model's performance. The 'Results and Analysis'
section details the findings, including model-specific
evaluation metrics, learning curves, confusion matrices, ROC
curves, and precision-recall curves. The 'Conclusion’ section
comprehensively appraises the investigation, including its
implications, limitations, and recommendations for future
scholarly research in this field.

2. RELATED WORKS

The authors of [15] suggest deep learning models based
on convolutional neural networks (CNNs) and long short-term
memory (LSTM) networks for identifying DDoS attacks in
loT networks. These models have a high accuracy of 97.16%
after training on the most recent CIC-1DS2017 datasets. Deep
learning models outperform conventional machine learning
methods in terms of accuracy. These models can automatically
learn from unstructured and diverse data, extract features,
adjust to shifting network conditions, and identify novel attack
types. The authors propose creating new deep-learning
architectures and training techniques to address open research
issues in 10T cybersecurity.

In [16], researchers used the loT-23 dataset, which
comprises network traffic information from both malware-
infected Raspberry Pi devices and benign loT devices, to
undertake an experimental evaluation. To identify attacks on
0T devices, they suggested a hybrid deep learning model that
focuses on dynamic analysis of attacks by running malicious
binary files on devices and observing network traffic. In this
novel method, op-code sequences were chosen as features for
classification, and feature graphs were made to show the
connections between features and samples. They used deep
Eigenspace learning to decrease the dimensionality of the
feature space and improve classification accuracy. An
empirical analysis showed that junk code insertion assaults
may be detected with 98% accuracy. The study's
shortcomings, which are encouraging but call for further
validation on more extensive and more diverse datasets for
real-world applicability, include a tiny and self-manufactured
dataset. In conclusion, the hybrid Deep Learning Model
developed by the authors provides a viable way to increase
lIoT device security by effectively exploiting loT-generated
data.

The application of distributed deep learning techniques
for loT threat detection was applied by [17], but they need to
provide the research dataset. It does, however, refer to
numerous datasets that are frequently used for assessing
intrusion detection systems. A CNN model achieved an
accuracy of 0.9430 in an loT micro-security add-on, and
RNN-LSTM achieved mean accuracy ranging from 73.21% to
97.84% in various subsets of the Mirai and Gafgyt botnets,
according to the article, which provides comprehensive
accuracy data for numerous models. Data gathering from loT
devices, training deep learning models on a back-end server,
and actual time implementation for attack detection are all
components of the suggested method for IoT attack detection.
This method uses both the processing power of 10T devices
and servers. The authors claim their approach has promised to
identify developing loT assaults, especially those leveraging
encrypted traffic for escape. However, potential limitations
and hurdles include the requirement for strong encryption and
privacy safeguards.

Authors of [18] examined the use of the Bot-l1oT dataset
produced at the Australian Centre for Cyber Security (ACCS)
to evaluate the use of machine learning to detect cyber threats
within 10T networks. This dataset, which includes valid traffic
and numerous attack types like probing denial-of-service
attacks and information theft, is essential for teaching machine
learning algorithms to distinguish between genuine and
malicious network activity. The approach used by the authors
included extensive data processing steps, feature extraction
using CICFlowMeter, and the application of seven different
machine learning algorithms, including KNN, 1D3, quadratic
discriminant analysis (QDA), Random Forest, AdaBoost,
multilayer perceptron (MLP), and Naive Bayes (NB).
Adaboost, which achieved 100% accuracy, precision, recall,
and F-measure, was the best-performing algorithm, with KNN
and 1D3 following behind with 99%.

In addition to providing a foundation for more
sophisticated and accurate detection systems, the study
emphasizes the potential of machine learning to strengthen
IoT network security and the importance of diversified
datasets that include both legitimate and malicious traffic for
efficient algorithm training. The authors' additional
contributions to the 10T security literature include improving
attack detection in 10T networks, refining feature selection to
increase algorithm performance, and exploring the relatively
new Bot-l1oT dataset. This indicates that this study offers a
thorough and insightful examination of machine learning's
function in identifying cyberattacks within 10T networks,
highlighting the importance of different training data.

To improve the cybersecurity of computer numerical
control (CNC) equipment, the article [19] presents a novel
cybersecurity solution that combines deep learning algorithms
with 10T devices. The authors separated the dataset into
training and testing subsets by classifying a dataset of cutting
signals recorded under various cutting settings into three
groups. A deep neural network (DNN) model was assessed
alongside conventional machine learning classifiers like KNN,
artificial neural networks (ANN), and support vector machines
(SVM), as well as ensemble learning techniques like random
forest (RF) and eXtreme Gradient Boosting (XGBoost). The
outcomes demonstrated the suggested DNN model's better
performance, reaching a remarkable 99.47% classification
accuracy on the test dataset. Precision and recall scores close
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to one suggested reliable fake signal detection during
cyberattacks. The model's superior detection abilities,
particularly during attacks, were confirmed by performance
evaluations using fl-scores and receiver operating
characteristic (ROC) curves, with the maximum performance
at1.0.

3. METHODS AND MATERIALS
The overall methodological approach is discussed in this
section, which is depicted in Fig. 3 as well.
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Fig. 3. Research Process

As mentioned in Fig. 3, the deep learning process on the
"CIC-10T2023" dataset encompasses multiple essential steps.
The process commences with pre-processing, wherein the raw
data is subjected to cleansing, normalization, and
transformation to verify its appropriateness for subsequent
analysis. In the standardization phase, the data is modified to
have a mean of 0 and a standard deviation 1. This process
ensures that feature weights are consistent and reduces the
influence of certain traits. Data cleaning is the process of
eliminating or rectifying errors, corruptions, copies, and
incorrectly formatted data to improve the overall quality of the
data. Feature selection is a process that selects the most critical
variables, which helps to reduce overfitting and improve the
model's accuracy. The procedure continues with classification,
utilizing the chosen features in an FNN model to classify or
forecast the target variable. The FNN model's performance is
evaluated through the Training and Testing phases, which
involve using a portion of the data for training and evaluating
the model on new data. Result Evaluation assesses the model's
efficacy by employing diverse metrics such as precision,
recall, F1 score, and accuracy, offering valuable insights into
its performance.

3.1 Dataset Overview

This paper utilizes the publicly accessible CIC-10T2023
dataset [20], which comprises authentic network traffic from
various 10T devices in typical and malicious conditions. The
CIC-10T2023 dataset was produced in collaboration between
the Information Technology University of Copenhagen (ITU)
and the Canadian Institute for Cybersecurity (CIC). A smart
home environment comprising twenty loT devices (cameras,
thermostats, smart TVs, smart wearables, etc.) was simulated
to create the dataset. Wireshark and TCPDump were utilized
to capture network traffic for classification by Snort and
Suricata intrusion detection systems. The dataset comprises
ten days' worth of network traffic, consisting of five days of
regular traffic and five days of attack traffic. The dataset
consists of ten distinct varieties of DDoS attacks, namely
MQTT Flood, CoAP Flood, WS-DDoS (WebSocket), Web
Service Flood (SOAP), and Web Service Flood (RESTful), in
addition to TCP SYN Flood, UDP Flood, HTTP Flood, HTTP
Slow Post, Slowloris, MQTT Flood, CoAP Flood. The dataset
comprises an estimated eighty million packets, of which
sixteen million are deemed normal, and 64 million are
classified as malicious. Each transmission in the dataset is
accompanied by 115 characteristics, which comprise the
source and destination IP addresses, protocol, payload size,
and timestamp. The paper [13] executed the machine learning
approach with the same dataset, where they analyzed various
machine learning algorithms for the CIC-10T2023 dataset.
Besides, in [21], an LSTM-based deep learning approach is
proposed based on this dataset.
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Fig. 4. Dataset Overview in terms of various cyber attacks

The overall number of rows in the dataset and the
corresponding attacks and their row counts are shown in Fig 4.
A wide range of IoT threats thus threatens the availability and
integrity of computer systems and networks in cybersecurity.
Distributed Denial of Service (DDoS) attacks use several
tactics, such as flooding assaults like UDP and ICMP Floods
and fragmentation-based attacks. DoS attacks impair services
by saturating one source with traffic. Attacks used for
reconnaissance involve probing to find out about services and
weaknesses. Web-based assaults target web programs with
methods like SQL Injection and XSS. Brute force attacks
employ a series of tests to gain unauthorized access. Spoofing
refers to attacks that alter network traffic or fake entities.
Finally, Mirai attacks employ tactics like GREIP Flood and
UDPPIain attacks targeting loT devices. Protecting digital
assets and maintaining network stability from attacks presents
unique challenges for security professionals.
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Fig 5 presents a comprehensive dataset comprising 47
different features that were painstakingly gathered from
network traffic data and are used as the basis for in-depth
analysis and categorization. These features cover a wide range
of network characteristics, from the most basic like
timestamps that show when packets were captured and flow
durations that show how long communication sessions
lasted—to the most complex—Iike protocol types, packet
rates, and flag information that reveal the nature and degree of
network activity. Furthermore, the examination of protocols
like HTTP, HTTPS, DNS, TCP, UDP, ARP, and others makes
it possible to identify communication patterns and services
thanks to the presence of application, transport, and link layer
protocol identification. Inter-arrival times (IAT) measure the
time gaps between subsequent packets, and packet length
statistics, which include aggregate metrics like total sum,
minimum, maximum, average, and standard deviation, provide
deep insights into the distribution of packet sizes within a
flow.

Fig. 5. Features from the network traffic

The dataset's statistical measurements, including
magnitude, radius, covariance, variance, and weight, provide
complex statistical viewpoints that enable a detailed analysis
of packet length distributions and their interactions. The
dataset's usefulness extends to network performance analysis,
making it possible to evaluate network performance measures.
The combined effect of these elements is significant because it
gives stakeholders the ability to enhance security protocols,
optimize network performance, and guarantee the
dependability and effectiveness of network communications.
This dataset provides a cornerstone in the toolkit needed for
thorough examination and classification of networking
behavior, ultimately enhancing the robustness and
dependability of contemporary network infrastructures. It
facilitates tasks like network monitoring, detection of
breaches, and traffic engineering.

3.2FNN

Fig 6 visually illustrates the fundamental design of an
FNN. According to [22], FNNs consist of three primary
layers: the input, hidden, and output layers. In an FNN, the
number of layers in the input and output layers is typically the

same, while the number of hidden layers and neurons within
them can vary based on specific requirements. Trial and error,
guided by performance considerations, is often employed to
determine the optimal configuration of hidden layers and
neurons. The network's architecture maps inputs, represented
by offsets 61, 82, and 43, to outputs in the form of hinge
angles o, B, and vy, using weighted connections between
artificial neurons across different layers. During training, these
weights are adjusted to effectively map inputs (the offsets of
block centers) to outputs (corresponding hinge angles). Each
artificial neuron within the FNN is characterized by an
activation function, typically nonlinear, such as the tangent
sigmoid or logarithmic sigmoid, which introduces the
necessary nonlinearities for complex function approximation.
It is worth noting that, following the Universal Approximation
Theorem, a single hidden layer FNN with a finite number of
neurons can estimate continuous functions on compact subsets
of Rn, where n is the number of inputs. However, determining
the optimal FNN architectural configuration for a specific
input-output relationship often requires a trial-and-error
approach, considering factors like the number of hidden
neurons and for training, utilizing the Mean Squared Error
(MSE) as the performance metric and the Levenberg-
Marquardt (LM) backpropagation technique due to its high
efficiency and second-order convergence rate, as documented
in the literature [23, 24, 25].

Input layer Hidden layers

. Output layer

Fig. 6. Architecture Model of a Feedforward Neural Network
(FNN) (source: [22])

3.3 Evaluation Metrics

The proposed model's evaluation matrices include
accuracy, precision, recall, and Fl-score, presented briefly
below with their corresponding equations.

Accuracy: The proportion of correctly categorized packets to
all packets.

| ~ TP + TN n
Curay = b fFP+ TN + FN

Precision: The proportion of harmful packets accurately
identified relative to all malicious packets expected.
TP
Precision = — - 2
recision TP L FP (2
Recall: The proportion of harmful packets that were
accurately identified to all malicious packets.
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TP
Recall = ——— 3)
TP+ FN

F1-Score: The harmonic means of recall and precision.
Precision + Recall

F1 — Score = > 4)

4., RESULTS AND FINDINGS

This study advances network security by demonstrating
how deep learning may improve intrusion detection while also
offering a thorough analysis underpinned by a strict 70-30 data
split and an instructive epoch learning curve.
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Fig. 7. Epoch curve of the proposed model

Fig 7’s epoch learning curve shows FNN's training
dynamics throughout 50 epochs. Notably, the curve shows
quick convergence and consistent gains in validation and
training accuracy, highlighting how well the model learned
and generalized from the dataset. The trustworthiness of the
IDS is confirmed by the near alignment of the two curves,
which shows robust generalization without overfitting.
Performance stabilizes after a certain point, indicating
declining returns from further training.
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Fig. 8. Precision-Recall Curve of the proposed model

Fig 8 indicates the curve's trajectory and sheds light on
how well the model can categorize various types of network
traffic. This paper's proposed IDS displays outstanding
precision-recall characteristics for various typical attack types,

including DDoS and DoS attacks, demonstrating its powerful
detection skills. It also points up opportunities for
improvement, particularly in classes with lower recall and
accuracy values, indicating the need for additional model
improvement for those risks.

The confusion matrix shown in Fig 9, which classifies
data instances into the true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) categories, is
revealed by this matrix. These categories represent the model's
capacity to accurately distinguish between positive and
negative situations and its tendency for Type | (false positive)
and Type Il (false negative) errors. The matrix also measures
performance indicators like recall, precision, and the F1-score
for each class, enabling a detailed analysis of the IDS's
capabilities for identifying specific threats.
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Fig. 9. Confusion Matrix
Table 1. Evaluation matrices of the proposed FNN model

Evaluation Matrices Output (Score)
Accuracy 0.9807
F1 Score 0.9786
Recall Score 0.9807
Precision Score 0.9799

Table 1 indicates the assessment of our proposed IDS
using rigorous testing and actual network traffic information.
The accuracy, F1 score, recall score, and precision score of the
performance metrics table highlight how well IDS can
discriminate between legitimate and malicious network data.
This paper’s system displays its ability to achieve a
harmonious balance between accurately identifying network
intrusions and avoiding false positives with an exceptional
accuracy of 0.9807 and an F1 score of 0.9786. Additionally,
the system's recall score of 0.9807 demonstrates its
dependability in identifying genuine threats, and its precision
score of 0.9799 indicates its accuracy in reducing false alerts.

Table 2 presents a comparison and explains how different
models for machine learning and deep learning compare in
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terms of performance with our proposed Feedforward Neural
Network (FNN) for 10T intrusion detection using the CIC-
10T2023 dataset.

Table 2. Comparison among various machine learning and
deep learning approaches with our proposed FNN approach

Evalua_ltion Accuracy F1 Recall Precision
Matrices Score Score Score
FNN 0.9807 0.9786 0.9807 0.9799
LSTM 0.9875 0.9859 0.9875 0.9866
Random Forest 0.9916 0.9909 0.9916 0.9913
KNN 0.9380 0.9364 0.9380 0.9366
Decision Tree 0.9919 0.9920 0.9954 0.9919
Logistic Regression 0.8275 0.8034 0.8275 0.8473

The FNN showed very high levels of accuracy with a
score of (0.9807). The values obtained include an F1 score of
(0.9786), a recall rate of (0.9807) and a precision rating of
(0.9799). These results demonstrate the FNN's ability to
differentiate between legitimate and malicious network data.
By comparison, the author of [13, 21] applied the Long Short-
Term Memory (LSTM) approach using the same dataset and
had superior accuracy (0.9875), F1 score (0.9859), recall
(0.9875), and precision (0.9866).

The Decision Tree model attained an accuracy of 0.9916,
an F1 score of 0.9919, a precision of 0.9883, and
demonstrated exceptional recall with a score of 0.9954. The
Random Forest model was very accurate and precise, with
accuracy and precision equal to (0.9916). On the other hand,
the performance of k-Nearest Neighbours (KNN) and Logistic
Regression models was lower than that of deep learning
methods. Indeed, while FNN did not beat other top-
performing models in all metrics, it was more balanced by
reducing false positive rates. Thus, it suits loT security
applications where simplicity, fastness, and effectiveness are
key factors.

5. CONCLUSION AND FUTURE WORK

This study explores the crucial field of intrusion detection
inside the developing loT environment. With its exponentially
growing number of physically connected loT devices, network
security faces both unmatched opportunities and difficulties.
By building the analysis around an extensive dataset named
CIC-10T2023, a very recent dataset of different cyberattack
kinds, and by picking an FNN model for intrusion detection.
Through investigation and review produced encouraging
findings. With a fantastic accuracy of 0.9807 and an F1 score
of 0.9786, the FNN successfully distinguished between
legitimate and malicious network traffic. With a recall score of
0.9807, demonstrating its robustness in recognizing actual
threats, and a precision score of 0.9799, emphasizing its
precision in decreasing false positives, this emphasizes the
system'’s ability to strike a balance among identifying network
intrusions and limiting false alarms. These results demonstrate
the usefulness of the IDS in protecting 10T ecosystems, with
significant consequences for network security experts and
researchers.

It's essential to recognize the limits of this study, though.
The dataset's specific properties may impact the model's
performance even though it is comprehensive and may not
cover all potential loT attack scenarios. Future studies may
also improve the model's performance and investigate real-
time detection capabilities. Collaboration among cybersecurity
experts may enhance the sturdiness and scalability of intrusion
detection systems in the constantly changing 10T environment.

Future work will be impacted by the inevitably new attack
avenues that 10T technological improvements will bring forth,
demanding continued research and advancement in intrusion
detection systems. Additionally, using anomaly detection
methods and adding more complex characteristics could
improve the IDS's precision and recall even more.
Additionally, to confirm the system's efficacy in real-world
circumstances, real-world implementation and testing in
various 10T environments are essential. This study is a
significant step toward strengthening loT security through
efficient intrusion detection. Creating dependable and flexible
security solutions is crucial as the 10T expands quickly. This
study contributes to this ongoing effort by providing a solid
framework for the defense of 10T ecosystems against various
cyber threats.

DATASET AVAILABILITY STATEMENT

The dataset used in this study can be found at
https://www.unb.ca/cic/datasets/iotdataset-2023.html
[accessed on 12 November 2023].
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