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1. INTRODUCTION 
The Internet of Things (IoT), which has emerged as a 

disruptive force across numerous sectors, is profoundly 
reshaping interaction with both the digital and physical realms. 
IoT is a network that consists of physical devices, 
automobiles, appliances, and other items that are equipped 
with sensors, software, and network connectivity that enables 
the gathering and exchange of data [1]. IoT applications 
provide never-before-seen possibilities for productivity, 
efficiency, and convenience by allowing objects to exchange 
data and interact via the internet. IoT technology has brought 
forth notable progress, especially in the fields of healthcare, 
urban planning, and automation in industries. Moreover, IoT 
devices produce enormous volumes of data, which makes 
them more fascinating since it makes it easier to analyze the 
data and make better decisions for the industry. Nevertheless, 
the growing utilization of IoT devices also exposes security 
risks. Worldwide, there were more than 112 million incidents  

 

of cyber assaults on the IoT in 2022 [2]. Multiple industries  
that heavily rely on IoT devices have recognized a significant 
number of attacks originating within the IoT network. Heavy 
industry-level IoT and control system applications are 
especially vulnerable to threats including active-passive 
eavesdropping, Man-in-the-Middle (MitM), masquerade, DoS 
and DDoS, spoofing, phishing, viruses, ransomware, protocol 
attacks, reconnaissance, and supply chain attacks [3, 4]. These 
risks include the possibility of data breaches, illegal 
accessibility, and denial-of-service attacks, which jeopardize 
user safety and privacy while also putting the integrity of 
critical systems in jeopardy. Hence, it is crucial to prioritize 
the resolution of these security concerns in order to fully use 
the capabilities of IoT applications. 

The healthcare sector is one that depends more and more 
on technology innovation than other industries. Its medical 
applications and control systems have a noticeable IoT 
integration. The Internet of Medical Things (IoMT) is a 

The Internet of Medical Things (IoMT) is revolutionizing healthcare by providing 

remarkable possibilities for remote patient monitoring, instantaneous data analysis, and 

customized healthcare delivery. However, the widespread use of interconnected medical 

devices has exposed vulnerabilities to cyber threats, posing significant challenges to the 

security, privacy, and accessibility of healthcare data and services. The CICIoMT2024 

dataset is a crucial resource in IoMT security, offering a wide range of cyber-attacks 

targeting IoMT devices. This paper uses data balancing techniques like SMOTE and 

advanced machine learning (ML) models to analyze cyber threats on IoMT devices, 

aiming to improve healthcare system safety by identifying and mitigating cyberattacks. By 

conducting extensive experiments, the paper has determined the most effective ML models 

for three different levels of classification of the dataset: binary, multiclass, and multitype. 

Employing ML techniques like AdaBoost, Random Forest, kNN, and XGBoost proves to 

be extremely powerful in accurately categorizing various types of attacks. This study 

emphasizes the importance of proactive cybersecurity measures in IoMT ecosystems, as 

well as the effectiveness of ML techniques in protecting healthcare systems from evolving 

cyber threats. 
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distinct subset of the broader IoT that is specifically dedicated 
to healthcare and medical applications. Devices for remote 
patient monitoring, wearable fitness trackers, and advanced 
diagnostic systems are just a few examples of the wide range 
of technologies that make up IoMT devices. With the use of 
these tools, patients and healthcare professionals may 
communicate directly and continuously, allowing for real-time 
health monitoring, data collection, and analysis. Pradhan et al. 
[5] classify healthcare IoT technologies into three key 
domains: identification, communication, and location 
technologies. This three-part categorization, which seeks to 
expand the predominance of smart technology-enabled 
advanced healthcare systems, includes large databases, 
servers, cloud integration, network streams, and the inclusion 
of different service devices and control systems. Ensuring a 
reliable and effective smart healthcare framework is 
contingent upon the proper distribution, administration, and 
control mechanisms of these technologies. Therefore, it is 
crucial to prioritize the necessity for recognition and 
mitigation of the risks posed by the cyber-attacks associated 
with IoT in this regard. Protecting patients and everyone 
involved in the healthcare system depends on promptly 
detecting and eliminating such risks. 

In the field of IoMT security, the CICIoMT2024 dataset 
[6] is a trailblazing benchmark that represents a coordinated 
effort to enhance the development and validation of security 
solutions tailored for healthcare systems. This dataset contains 
the outcomes of 18 well-planned attacks against an IoMT 
testbed, including 40 real and simulated devices. The dataset 
captures the diversity and intricacy of healthcare’s digital 
infrastructure. The dataset incorporates multiple protocols 
such as Bluetooth, MQTT, and Wi-Fi, underscoring its 
diversity and alignment with real healthcare communication 
standards. We methodically categorize the attacks into five 
major categories: DDoS, DoS, Recon, MQTT, and Spoofing, 
enabling an organized approach to analysis and mitigation. 
The primary objective of the CICIoMT2024 dataset is to 
improve the security of healthcare systems, making it a very 
important resource for both researchers and practitioners in the 
field. The seminal work by Dadkhah et al. [7] delineates the 
CICIoMT dataset, which stands as a crucial resource curated 
from diverse IoT devices, providing a comprehensive 
overview of the methodology employed. The rigorous 
planning, implementation, and data collection represent 
significant advancements in the field of medical IoT. Dadkhah 
et al. [7] emphasize the importance of the CICIoMT2024 
dataset, which was an important contribution to the IoMT 
dataset because it provided a thorough collection of real-time 
attacks on IoMT devices as well as extensive IoMT profiling. 
This groundbreaking endeavor greatly improves the current 
state of the IoMT dataset landscape. This underscores the 
urgent need for robust and adaptable security solutions to 
safeguard the confidentiality and precision of medical records 
and services, particularly as our world becomes increasingly 
interconnected. Our primary aim is to employ various machine 
learning models for dataset analysis, effectively detecting 
diverse attack classes, thereby contributing to enhancing the 
security of IoMT devices within healthcare facilities. 

 

2. LITERATURE REVIEW 
The application of IoT technology in healthcare offers a 

substantial array of devices for both patients and healthcare 

workers. These devices gather tremendous amounts of data 
during different phases of their functioning and preserve 
confidential patient information, presenting significant 
security risks. In keeping with the many uses and intricacies of 
medical IoT, the produced datasets cover a broad range of 
categories. IoT device cyberattacks take advantage of flaws in 
operational controls and communication protocols, which 
expose critical industries to significant risk and could lead to 
catastrophic effects including loss of data, service interruption, 
or even complete data destruction [4]. Hussain et al. [8] 
commonly employ traditional security measures either at the 
network or host level. While host-level security is often 
stronger, the limited resources and processing capabilities of 
IoT devices frequently make it hard to implement. This means 
that, as network-based cyberattacks are the most common 
danger to the security of healthcare IoT data, network-based 
security techniques are preferred for safeguarding IoT items. 

Over an extensive period of time, researchers have 
aggregated network traffic data from diverse IoT devices, 
meticulously capturing, organizing, and analyzing various 
forms of attacks to construct datasets tailored for security 
purposes and intrusion detection systems [9]. Prominent 
examples of such attack datasets include the TON IoT 
Datasets [10], the IoT Network Intrusion Dataset [11], the RT 
IoT 2022 dataset [12], the Bot-IoT dataset [13], and the 
CoAP-DoS dataset [14]. The WUSTL EHMS 2020 Dataset 
[15], the ECU-IoHT dataset [16], BlueTack [17], the ICU 
dataset [8], the IEC dataset [18], CIC-IoT2023 [19], and the 
CIC IoMT 2024 dataset [7] are some of the most important 
IoMT attack datasets. The Canadian Institute of Cybersecurity 
[6] manages the CICIoMT 2024 dataset, which stands out as a 
recent and extensive IoMT dataset [7]. The authors of the 
study stress how important the CICIoMT2024 dataset is, 
pointing out that it has a lot of real IoMT devices that can be 
attacked in different ways and that it could be used to make 
full IoMT pro- files. The dataset comprises network traffic 
data from 40 medical IoT devices, consisting of 25 authentic 
and 15 simulated devices. The dataset encompasses 18 distinct 
types of IoT attacks, categorized into five distinct attack 
categories: DoS, DDoS, MQTT, spoofing, and reconnaissance. 
The collection also contains device profiling, allowing the 
identification of issues with specific devices at various points 
in their lifespan throughout the healthcare network. 

In their study, Dadkhah et al. [7] discuss the significant 
contributions of their research, which include the creation of a 
large IoMT attack dataset, the utilization of novel methods to 
simulate attacks on the IoMT, the development of IoMT life-
cycle profiles to enhance comprehension, and the application 
of several models to assess the dataset from various 
perspectives. However, they see the possibility of future 
improvement, especially by delving further into machine 
learning (ML) algorithms and approaches. By utilizing state-
of-the-art ML algorithms and evaluation metrics, our research 
aims to enhance this assessment. Specifically, we focus on the 
six-category classification present in the CICIoMT2024 
dataset: Benign, DoS, DDoS, MQTT, Recon, and Spoofing. 
Our work aims to aid in the efficient identification of various 
attack classes within the IoMT environment by utilizing 
cutting-edge ML algorithms with an optimal selection of 
parameters and extensive assessment metrics. 

Anwer et al. [20] compiled a thorough analysis of the 
methods used to identify ML attacks on the IoT. The analysis 
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provides six main approaches, notably supervised learning, 
unsupervised learning, ensemble learning, semi-supervised 
user learning, reinforcement learning, and active learning. For 
our study, we’ve decided to use supervised learning in our ML 
methods to detect threats in the IoMT space. The choice is 
based on the meticulous organization of the CICIoMT dataset, 
which provides separate CSV files that outline various types 
of attacks. Many algorithms for ML have been extensively 
used for the detection of IoT attacks. These algorithms include 
Random Forest [7,20,21,22,23], Logistic Regression [7,22,23], 
k-Nearest Neighbors [21,23,24], Naive Bayes [21,23], Support 
Vector Machines (SVM) [20,21,24], Gradient Boosting 
[7,20,22], LSTM-based model [19], and Neural Networks 
[7,21,22,24]. The objective of our research is to 
comprehensively evaluate these ML algorithms by employing 
them to detect IoMT attacks. Subsequently, we will 
meticulously evaluate the performance of several ML models 
through rigorous testing utilizing diverse techniques in order 
to choose the most effective one. 

 

3. METHODOLOGY 

3.1 Dataset Information 

The CICIoMT 2024 dataset [6] is a complete benchmark 
for evaluating the security of IoMT devices used in healthcare 
facility scenarios. The dataset comprises simulated instances 
of actual attacks on a testbed consisting of 40 IoMT devices. 
This ensures the seamless integration of these devices into 
vital healthcare infrastructure. This dataset uses attack 
simulation to evaluate the widely used Bluetooth Low Energy 
(BLE), WiFi, and MQTT protocols in healthcare. Creating a 
practical benchmark dataset was the primary objective of that 
project in order to facilitate the creation and evaluation of 
IoMT security solutions. 

The CICIoMT2024 dataset, a tabular dataset in CSV 
formats, contains information relevant to cybersecurity 
incidents classified into three levels: binary (based on benign 
and attacks), categorical (based on six distinct classes), and 
attacks (based on 19 attack types). The zipped dataset we 
obtained from the official website of the dataset [6] was 
structured with two folders, ‘train’ and ‘test’, each containing 
51 and 21 CSV files, respectively. Each entry in the dataset 
corresponds to a singular occurrence of a cybersecurity 
instance, and there are 45 columns that include various 
features linked to each instance. The study of Dadkhah et. al. 
[7] extensively covers the specific characteristics and statistics 
of the features. Our study focused only on the Wi- Fi/MQTT 
data in the dataset, conducting a variety of attacks against 
MQTT-simulated devices and Wi-Fi-equipped IoMT devices. 

In terms of class categorization, the dataset can be divided 
into three classification levels into distinct classes. The binary 
categorization divides the data into benign (non-attack) and 
attack categories. The multiclass classification classifies the 
data into six specific categories: DDoS (Distributed Denial of 
Service), DoS (Denial of Service), MQTT (Message Queuing 
Telemetry Transport), benign (non-attacks), recon 
(Reconnaissance), and spoofing. The categorization of the data 
into multiple attack types, which produced a total of 19 classes 
for the multitype classification, was one of the most 
meticulous contributions to the dataset. These classifications 
are the most common types of cybersecurity risks encountered 
in IoT-based network infrastructures. 

Upon closer examination of the dataset and its data for 
each classification level, a notable imbalance between classes 
becomes apparent, as visually depicted in the supplementary 
bar plot in Figure 1. The dataset exhibits a significant class 
imbalance at each level of classification, with the attack 
classes (e.g., DDoS and DoS type classes) being the most 
prevalent. This indicates an unequal distribution of 
cybersecurity incidents across various classes at different 
classification levels. The presence of class imbalance presents 
difficulties in training and evaluating ML models since these 
models might exhibit biases towards the dominant class, 
resulting in poorer outcomes for the minority classes. The 
importance of the CICIoMT2024 dataset goes beyond its 
originality, as it possesses vast potential to tackle critical 
cybersecurity concerns in the healthcare domain. The dataset 
is a fundamental resource that researchers, as well as 
professionals, can use to build and assess strong security 
solutions that protect healthcare systems from emerging and 
forthcoming cyberattacks. 

 

Fig. 1.  Training data class imbalances across three 
classification levels 
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3.2 Data Preprocessing 

Following the multitype classification level, the 
downloaded dataset comprised training and test data in several 
directories, with many CSV files based on 19 distinct class 
types inside each folder. After reviewing the CSV files and 
multiple class types, we discovered no feature mismatches. 
Additionally, we discovered that the dataset had no null or 
missing values, obviating the need for additional data 
cleansing. Following statistical analysis and visualization of 
features’ unique value densities, we discovered that the feature 
‘Drate’ had a value of zero in every dataset instance; hence, 
we removed it from the training data. Next, we implemented 
the data segregation procedure to classify the dataset into three 
distinct levels. Based on the requirements of the classification 
level, we separated the training and test data and created three 
levels of distinct databases: binary, multiclass, and multitype. 
Subsequently, we combined the training data into a single 
CSV file and the test data into a separate CSV file for each of 
the databases. In order to streamline our machine learning 
approach, we inserted a new column named ‘class’ into the 
combined dataset. We assigned the various class labels as 
values for each of the three categorization levels. Different 
classes from all three levels of classification are shown in 
Table 1. The combined training data for each categorization 
level exhibited a significant data imbalance, as seen in Figure 
1. To address the severely unbalanced dataset, we next put the 
SMOTE balancing approach into practice, as covered in the 
next subsection 3.3. We meticulously organized the data and 
reduced the complexity of the class labels by encoding them to 
facilitate the assessment process after the machine learning 
algorithm was trained.  

Table 1. Three level of Categorization of the CICIoMT2024 
dataset 

Binary Class Multi Class Multitype Class 

Non-Attack Benign Benign 

 

 

 

 

 
 

 

 

Attack 

 

DoS 

DoS TCP 

DoS ICMP 

DoS SYN 

DoS UDP 

 

DDoS 

DDoS TCP 

DDoS ICMP 

DDoS SYN 

DDoS UDP 

 

Recon 

Ping Sweep 

Recon VulScan 

OS Scan 

Port Scan 

 

MQTT 

Malformed Data 

DoS Connect Flood 

DDoS Connect Flood 

DoS Publish Flood 

DDoS Publish Flood 

Spoofing ARP Spoofing 

3.3 Data Balancing 

One of the most common challenges in machine learning, 
especially in classification tasks, is the uneven distribution of 
classes within datasets. In the CICIoMT2024 dataset, Figure 1 
clearly illustrates the substantial class imbalance across the 
three categories: binary, multiclass, and multitype. ML models 
are severely hampered by this imbalance, mainly because of 
their innate bias in favor of the majority class. Consequently, 
training models on datasets with an uneven distribution often 

results in poor performance and erroneous predictions. An 
imbalanced distribution of classes in the CICIoMT2024 
dataset might lead to biased model outputs while building and 
evaluating security solutions. This issue weakens the 
trustworthiness and effectiveness of security systems, thereby 
jeopardizing the precision and reliability of healthcare 
cybersecurity measures that depend on this type of dataset. To 
make sure that the security solutions derived from the 
CICIoMT2024 dataset work and are reliable, it is important to 
address the issue of class imbalance. We utilize the Synthetic 
Minority Over-sampling Technique (SMOTE) to rectify the 
imbalance in the CICIoMT2024 dataset. SMOTE is a widely 
used technique for addressing the issue of unbalanced datasets 
by creating artificial samples for minority classes. SMOTE 
addresses the issue of class imbalance by generating synthetic 
instances along the line segments that connect the nearest 
neighbors of k individuals from a minority class. This 
approach minimizes the emergence of bias while effectively 
resolving the problem. We expect that SMOTE will improve 
the robustness and generalization capacity of ML models 
trained on the CICIoMT2024 dataset by mitigating imbalances 
across binary, multiclass, and multitype categories. 

 

Fig. 2. Training data class balanced across three classification 
levels after applying SMOTE 
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The application of SMOTE to the CICIoMT2024 dataset 
results in a substantial reduction in class imbalance across all 
categories. Specifically, before SMOTE, the binary class 
exhibited a significant gap of over 6.7 million samples 
between the two classes. However, after applying SMOTE, 
both classes achieve balance with a total of 6.9 million 
samples each. Similarly, SMOTE balances all six classes in 
the multiclass category, which had class im- balances ranging 
from 3 to 4.7 million samples. Additionally, in the multitype 
class, which originally had imbalances of up to 1.6 million 
samples between classes, SMOTE achieves balance across all 
19 classes, with each class containing a total of 1.6 million 
samples. Figure 2 shows the evenly distributed classes across 

three different class categories after applying SMOTE. This 
transformation not only addresses the inherent biases in the 
dataset but also enhances its suitability for training robust and 
reliable machine learning models for IoMT security 
applications. In conclusion, the application of the SMOTE 
technique effectively mitigates class imbalance within the 
CICIoMT2024 dataset, thereby improving the dataset’s 
suitability for training machine learning models. 

3.4 Machine Learning Models 

In this study, we attempted to apply the most widely used 
and appropriate machine learning algorithms in many research 
studies (such as [25] and [26]) to evaluate the dataset at three 
distinct categorization levels. We thus picked seven machine 
learning algorithms: AdaBoost, k-Nearest Neighbors (k-NN), 
Logistic Regression (LR), Naive Bayes, Random Forest (RF), 
ANN-based Support Vector Machine (SVM-ANN), and 
XGBoost. To help understand our work better, we have 
included a brief discussion of the algorithm explanations 
below. 

AdaBoost (Adaptive Boosting): AdaBoost is an 
ensemble learning technique that combines numerous weak 
learners to produce a powerful classifier. The way it operates 
is that weak learners are successively fitted to learners that are 
modified frequently, and the sum of all the weak learners 
yields the final prediction. AdaBoost prioritizes the most 
challenging situations for upcoming learners by giving more 
weights to occurrences that are erroneously identified. A 
weighted total of weak learners, with each learner’s 
contribution determined by accuracy, makes up the final 
model. The AdaBoost algorithm can be understood by the 
equation below: 

𝐹(𝑥) = ∑ 𝛼𝑡𝑓𝑡(𝑥)

𝑇

𝑡=1

       (1) 

Where F (x) is the final prediction function, t is the weight 
assigned to weak learner ft(x), and T is the number of weak 
learners. 

k-NN (k-Nearest Neighbors): An algorithm for non-
parametric classification that divides instances into groups 
according to the majority class of their k nearest neighbors. 
The process begins with calculating the distance between each 
training instance and the test instance, after which the k 
nearest neighbors are determined. The class label of the test 
instance is determined by a majority vote among its neighbors. 

Logistic Regression: It is a linear classification approach 
that uses a logistic function to estimate the likelihood of a 
binary result. It calculates the likelihood that a specific 

example is a member of a specific category based on its 
characteristics. Logistic regression employs a logistic function 
to estimate the likelihood and generates predictions by 
applying a threshold. The following equation provides a 
thorough understanding of the logistic regression algorithm: 

𝑝(𝑦 = 1|𝑥) =
1

1 + 𝑒−(β0+β1𝑥1+⋯+β𝑛𝑥𝑛)
       (2) 

Where p(y = 1x) is the probability that the target variable 
y is 1 given the input x, 0, 1, ..., n are the coefficients of the 
features x1, x2, ..., xn, and e is the base of the natural 
logarithm. 

Naive Bayes: It is a probabilistic approach to 
classification that relies on the notion of feature independence 
and is based on Bayes’ theorem. The algorithm computes the 
likelihood of each category based on a given set of 
characteristics and chooses the category with the greatest 
likelihood. The following equation provides a thorough 
understanding of the algorithm: 

𝑃(𝐶𝑘|𝑥) =
𝑃(𝑥|𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑥)
       (3) 

Where P (Ck|x) is the posterior probability of class Ck 
given the features x, P (x|Ck) is the likelihood of the features 
given class Ck, P (Ck) is the prior probability of class Ck, and 
P (x) is the probability of the features. 

Random Forest: It constructs many decision trees 
throughout the training process and produces the most 
common class or numerical prediction where decision trees 
serve as the fundamental building blocks by recursively 
splitting the dataset based on feature values and constructing 
the tree, aiming to create homogeneous subsets of data at each 
node. The purpose is to generate sets of data that are similar at 
each node. During the training process, multiple decision trees 
are built, with each tree employing a random subset of the 
training data and characteristics. 

SVM-ANN (Support Vector Machine with Artificial 
Neural Networks): It is a hybrid model that combines the 
strengths of Support Vector Machines (SVMs) and Artificial 
Neural Networks (ANNs). In our implementation, the SVM 
component is represented by a single fully connected layer 
defined within the SVM class. This layer is initialized with a 
linear transformation from the input features to the number of 
classes, leveraging the margin maximization property inherent 
to SVMs. This hybrid approach aims to capture both the non-
linear relationships in the data, enabled by ANNs, and the 
margin-based classification characteristic of SVMs, thereby 
enhancing the model’s capability for effective classification.  

XGBoost (Extreme Gradient Boosting): This enhanced 
gradient boosting algorithm creates numerous decision trees 
progressively to repair prior errors. With a more regularized 
model formulation than gradient boosting approaches, 
XGBoost controls overfitting and ensures model 
generalization to unseen data. Adding penalty terms to the loss 
function penalizes complex models, promoting simpler ones. 
The advanced capabilities of XGBoost include tree pruning 
and column subsampling. These methods improve model 
efficiency by reducing computation time and memory usage 
without affecting performance. 
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3.5 Evaluation Matrices 

Accuracy: It is the ratio of accurately predicted instances 
to the total number of instances. It provides a general 
summary of model performance but may not work for 
imbalanced datasets.  

Accuracy =
True Positives + True Negatives

Total Predictions
       (4) 

 
Precision: It shows the percentage of all expected 

positive cases that were accurately predicted. It emphasizes 
the model’s capacity to prevent false positives, which is 
crucial in situations where false positives might be expensive. 

Precision =
True Positives

True Positives + False Positives
       (5) 

Recall (Sensitivity): It quantifies the accuracy of 
accurately predicting positive instances relative to the total 
number of actual positive cases. The model’s capacity to 
accurately identify all positive occurrences is brought out, 
which is of utmost importance in scenarios where overlooking 
a positive example can result in substantial consequences. 

Recall =
True Positives

True Positives + False Negatives
       (6) 

F1-Score: It provides equilibrium between the two 
measures and is the harmonic mean of recall and precision. 
Considering both false positives and false negatives is 
particularly beneficial when working with unbalanced 
datasets. 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
       (7) 

 

4. RESULTS  

4.1 Binary Class Classification Results 

Seven different machine learning models were evaluated 

to classify instances as either “Attack” or “Benign” in the 
binary class classification results. The confusion matrices in 
Figure 5 provide a visual representation of the performance of 
each model. A higher concentration along the diagonal 
indicates more accurate predictions. With an astounding 
accuracy of 99.81%, AdaBoost was one of the best-
performing models; kNN came in next with an equally 
outstanding accuracy of 99.66%. The SVM-ANN model 
demonstrated strong performance, achieving an accuracy of 
97.31%. 

 
 

 
Fig. 3. Test accuracy of Binary classification in models 

 
 This highlights its effectiveness in accurately classifying 

instances. Alternatively, Logistic Regression showed a 
respectable performance, although with a slightly lower 
accuracy of 97.76%— almost on par with Naive Bayes’ 97%. 
In addition, Random Forest showed an impressive accuracy of 
99.87%, which further solidifies its dependability in binary 
classification tasks. Surprisingly, XG Boost outperformed all 
the other models, achieving an exceptional accuracy rate of 
99.90%. The test accuracy attained by the models can be seen 
clearly in Figure 3. 

 
Fig. 5. Confusion Matrices of all seven ML models for Binary classification 
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Fig. 4. Model accuracy for each of the binary classes 

 
The analysis of accuracy for each model by class is 

depicted in Figure 4. Most samples in the benign class were 
correctly identified using kNN, whereas the majority of 
samples in the malignant class were correctly diagnosed using 
Random Forest and XGBoost models. These comprehensive 
evaluations help in making well-informed decisions when 
choosing the most appropriate algorithm for future binary 
classification endeavors. The results highlight the 
effectiveness of the machine learning models in accurately 
distinguishing between “Attack” and “Benign” instances. 
AdaBoost, Random Forest, and XGBoost stand out as the top 
performers in terms of overall accuracy and performance. 

4.2 Multiclass Classification Results 

We evaluated the performance of seven machine learning 
models across six distinct classes: Benign, DDoS, DoS, 
Recon, MQTT, and Spoofing, for the multiclass classification 
results. Normalized confusion matrices in Figure 8 were used 
to test how well each model could predict, which showed how 
accurate each class’s classification was. The AdaBoost model 
exhibited strong performance across all classes, achieving an 
overall accuracy of 99.66%. Notably, it demonstrated 
exceptional accuracy in predicting Benign, DoS, and DDoS 
instances, with accuracy rates of 99.68%, 99.82%, and 
99.88%, respectively, which can be seen in Figure 7. 

However, it showed slightly lower accuracy for the Recon 
class at 94.96% and poor accuracy in Spoofing class at 
49.94% only. On the other hand, the ANN-SVM model was 
very poor at classifying instances, getting them wrong at zero 
percent accuracy for most of the classes.  Logistic Regression 
demonstrated moderate performance, achieving accuracies 
ranging from 10.84% for the MQTT class to 99.73% for the 
DDoS class and zero accuracy for the DoS and Recon classes. 
Random Forest emerged as one of the top-performing models, 
achieving high accuracy across all classes, with notable 
performance in predicting DDoS and MQTT instances at 
99.99% and 99.53%, respectively. Naive Bayes demonstrated 
relatively lower accuracy for the MQTT and Spoofing classes 
at 4.49% and 53.55%, respectively. XGBoost exhibited robust 
performance, particularly in predicting Benign and DoS 
instances, with accuracies of 97.83% and 99.84%, 
respectively. Additionally, k-NN achieved high accuracy 
across all classes, surpassing 89% accuracy for each class 
except Spoofing, with notable performance in predicting 
Recon instances at 93.86%. Among the seven ML models, 
AdaBoost, Random Forest, kNN, and XGboost performed 
very well, with 99.6%, 99.85%, 99.79%, and 99.33%, 
respectively, as shown in Figure 6. These results underscore 
the varying effectiveness of ML models in classifying 
multiclass data, with some models outperforming others 
across different classes. 

 
Fig. 6. Test accuracy of Multiclass Classification in models 

 
Fig. 8. Confusion Matrices of all seven ML models for Multiclass classification 
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Fig. 7. Model accuracy for each of the multiclass classes 

4.3 Multitype Class Classification Results 

We assessed the performance of seven machine learning 
models across a diverse set of 19 distinct classes for the 
multitype classification results. Each model’s predictive 
capabilities were evaluated using normalized confusion 
matrices in Figure 9, providing detailed insights into the 
classification accuracy for each class. The AdaBoost model 
demonstrated strong performance overall, achieving an 
accuracy of 95.06%. Notably, it was very good at predicting 
certain types of attacks, like DoS and DDoS-based attacks, 
with average 99.90% accuracy rates, respectively, and it was 
also very good at classifying MQTT-DoS-Publish instances 
with 100% accuracy. Conversely, the ANN-SVM model 
showed limited effectiveness, particularly for classes like 

Recon and MQTT, with accuracies of nearly zero percent 
accuracy. Logistic Regression had the poorest performance 
across classes, with accuracies ranging from maximum at zero 
to 68.75% for DoS-UDP instances, as we can see in Figure 11. 
Random Forest emerged as one of the top-performing models 
along with XGBoost, achieving high accuracy across most 
classes, with notable performance in predicting DDoS and 
MQTT instances with average 99.9% and 99.99% accuracy, 
respectively. Naïve Bayes demonstrated relatively lower 
accuracy than ANN-SVM for classes such as Recon and 
MQTT-based attack types. k-NN also had great accuracy 
across all classes, beating 60% accuracy for all but MQTT-
DDoS-Publish. It did especially well at predicting benign, 
DoS, and DDoS instances. Figure 10 exhibits that Random 
Forest and XGBoost are the best at classifying multitype 
classes. These results underscore the varying effectiveness of 
machine learning models in classifying multitype data, with 
certain models demonstrating superior performance across 
different classes. 

 
Fig. 9. Confusion Matrices of all seven ML models for Multitype classification 
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Fig. 10. Test Accuracy of Multitype Classification in Models 

 

5. DISCUSSION  
The models displayed different levels of performance at 

the binary classification level. AdaBoost, Random Forest, and 
XGBoost were the top-performing models, with accuracy rates 
of 99.81%, 99.87%, and 99.90%, respectively. These models 
showed impressive abilities in differentiating between attacks 
and non-attack instances. ANN-SVM and Logistic Regression 
demonstrated slightly lower accuracies of 97.31% and 
97.76%, respectively. However, they still performed well in 
effectively classifying binary data. k-NN achieved a high 
accuracy of 99.66%, showcasing their strong performance in 
the diverse landscape. Nevertheless, the accuracy of ANN-
SVM was the lowest at 99.66%. Overall, all seven models 
performed very well in binary classification among attack and 
benign samples, with all of them surpassing 97% accuracy for 
this classification task. This shows the high resiliency and 
efficiency of the ML models in classifying binary class 
attributes in the CICIoMT2024 dataset. 

For multiclass classification, KNN, AdaBoost, XGBoost, 
and Random Forest emerged as the top-performing models, 
with accuracy rates of 99.33%, 99.66%, 99.79%, and 99.85%, 
respectively. These models showed exceptional performance 
in accurately categorizing in- stances across various classes, 
showcasing their adaptability and efficiency in dealing with a 
wide range of data categories. The performance of Logistic 
Regression, ANN-SVM, and Naive Bayes was moderate, with 
accuracies ranging from 66.75% to 68.35%. Furthermore, 
these models have lower accuracy; among the six classes, such 
as DoS and MQTT, they were unable to classify relatively few 
class instances. It is also clear that not every ML model was 
effective in classifying the multiclass features in the dataset. 

Random Forest and XGBoost have demonstrated their 
superiority as the most effective models in multitype 
classification, attaining an exceptional accuracy rate of 99.2%. 
This illustrates their remarkable ability to correctly categorize 
instances in each of the 19 classes. In addition, both kNN and 
AdaBoost demonstrated remarkable performance, attaining 
respective accuracies of 96.74% and 95.06%. The models 
proved to be versatile and efficient in handling complex 
situations with a variety of data categories. Accuracy was 
lower for Logistic Regression, Random Forest, and k-NN, 
indicating rather poor performance at this level of 
classification. Additionally, the analysis reveals that as the 
number of classes increased, the effectiveness of Naive Bayes, 
ANN-SVM, and Logistic Regression models in classifying 
classes decreased proportionally. This indicates that these 
models did not exhibit resilience across the three classification 
levels, unlike AdaBoost, Random Forest, kNN, and XGBoost 
models. 

Overall, Random Forest, AdaBoost, kNN, and XGBoost 
outperformed all the other models in all three classification 
levels, positioning them as strong contenders for the top 
models. Their impressive performance emphasizes their ability 
to handle a wide range of classification tasks within the 
CICIoMT024 dataset, demonstrating their versatility and 
reliability with medical IoT device attack classification. 
Therefore, these four models could be used for further 
advancement to classify all of the classes efficiently by 

 
Fig. 11. Model accuracy for each of the multitype classes. 
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implementing ensemble learning or hybrid ML model 
learning. 

 

6. CONCLUSION  
This study aims to thoroughly investigate the security 

aspects of medical IoT devices, namely in the healthcare 
industry, using the cutting-edge CICIoMT2024 dataset. The 
emergence of the IoT has culminated in significant and 
extensive improvements in numerous fields, offering 
exceptional efficiency and convenience while also giving rise 
to concerns over cybersecurity. Given the rapid increase in 
IoT usage, it is crucial to prioritize the protection of these 
interconnected devices from cyber threats. Our study makes a 
substantial contribution to this effort by specifically 
addressing the security concerns that are inherent in IoMT 
systems and presenting strong solutions that utilize ML 
techniques. Our work aimed to improve healthcare systems’ 
security by identifying and reducing cyber threats using 
sophisticated ML models. After a thorough analysis of the 
CICIoMT2024 dataset, we have identified the most optimal 
ML models for three distinct classification tasks: binary, 
multiclass, and multitype. This dataset comprises a diverse 
array of genuine and simulated attacks on IoMT devices. The 
results of our study highlight the efficacy of ensemble learning 
techniques, such as AdaBoost, Random Forest, kNN, and 
XGBoost, in accurately categorizing occurrences across 
various attack types. These models have shown exceptional 
ability to recover quickly and adjust to new situations, 
highlighting their potential for use in real-world scenarios to 
strengthen the security of medical IoT ecosystems.  

Although our study has been successful, it is important to 
acknowledge several limitations that should be considered for 
future research efforts. The use of a single dataset, which 
might not adequately capture the wide variety of cyberthreats 
present in IoMT environments, is one significant drawback. 
For example, we have gathered the WiFi and MQTT attack 
data from the CICIoMT website; nevertheless, our study does 
not classify all forms of attacks on IoMT devices because it 
does not include the Bluetooth traffic data. Furthermore, the 
effectiveness of ML models can vary depending on the 
dataset’s unique attributes and types of attacks. In order to 
overcome these restrictions, future research could focus on 
creating more extensive datasets and investigating innovative 
ML techniques specifically designed to tackle the distinct 
issues presented by security in medical IoT. Overall, our study 
is a groundbreaking endeavor to enhance the security of IoMT 
devices in healthcare facilities. With the help of the 
CICIoMT2024 dataset and advanced ML methods, our 
research demonstrated that using hybrid learning can 
effectively protect medical IoT networks from cyberattacks 
and make them more resilient. Our research lays the 
foundation for future studies focused on developing robust 
security solutions that safeguard the privacy, accuracy, and 
accessibility of healthcare data and services in an increasingly 
linked world. 
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