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1. INTRODUCTION

ABSTRACT

The Internet of Medical Things (IoMT) is revolutionizing healthcare by providing
remarkable possibilities for remote patient monitoring, instantaneous data analysis, and
customized healthcare delivery. However, the widespread use of interconnected medical
devices has exposed vulnerabilities to cyber threats, posing significant challenges to the
security, privacy, and accessibility of healthcare data and services. The CICIoMT2024
dataset is a crucial resource in IoMT security, offering a wide range of cyber-attacks
targeting IoMT devices. This paper uses data balancing techniques like SMOTE and
advanced machine learning (ML) models to analyze cyber threats on IoMT devices,
aiming to improve healthcare system safety by identifying and mitigating cyberattacks. By
conducting extensive experiments, the paper has determined the most effective ML models
for three different levels of classification of the dataset: binary, multiclass, and multitype.
Employing ML techniques like AdaBoost, Random Forest, KNN, and XGBoost proves to
be extremely powerful in accurately categorizing various types of attacks. This study
emphasizes the importance of proactive cybersecurity measures in loMT ecosystems, as
well as the effectiveness of ML techniques in protecting healthcare systems from evolving
cyber threats.

© 2024 The Authors. Published by Penteract Technology.
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

of cyber assaults on the 10T in 2022 [2]. Multiple industries

The Internet of Things (IoT), which has emerged as a
disruptive force across numerous sectors, is profoundly
reshaping interaction with both the digital and physical realms.
IoT is a network that consists of physical devices,
automobiles, appliances, and other items that are equipped
with sensors, software, and network connectivity that enables
the gathering and exchange of data [1]. 10T applications
provide never-before-seen possibilities for productivity,
efficiency, and convenience by allowing objects to exchange
data and interact via the internet. 10T technology has brought
forth notable progress, especially in the fields of healthcare,
urban planning, and automation in industries. Moreover, loT
devices produce enormous volumes of data, which makes
them more fascinating since it makes it easier to analyze the
data and make better decisions for the industry. Nevertheless,
the growing utilization of 10T devices also exposes security
risks. Worldwide, there were more than 112 million incidents
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that heavily rely on 10T devices have recognized a significant
number of attacks originating within the 1oT network. Heavy
industry-level 1oT and control system applications are
especially vulnerable to threats including active-passive
eavesdropping, Man-in-the-Middle (MitM), masquerade, DoS
and DDoS, spoofing, phishing, viruses, ransomware, protocol
attacks, reconnaissance, and supply chain attacks [3, 4]. These
risks include the possibility of data breaches, illegal
accessibility, and denial-of-service attacks, which jeopardize
user safety and privacy while also putting the integrity of
critical systems in jeopardy. Hence, it is crucial to prioritize
the resolution of these security concerns in order to fully use
the capabilities of 10T applications.

The healthcare sector is one that depends more and more
on technology innovation than other industries. Its medical
applications and control systems have a noticeable loT
integration. The Internet of Medical Things (IoMT) is a
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distinct subset of the broader 10T that is specifically dedicated
to healthcare and medical applications. Devices for remote
patient monitoring, wearable fitness trackers, and advanced
diagnostic systems are just a few examples of the wide range
of technologies that make up IoMT devices. With the use of
these tools, patients and healthcare professionals may
communicate directly and continuously, allowing for real-time
health monitoring, data collection, and analysis. Pradhan et al.
[5] classify healthcare 10T technologies into three key
domains: identification, communication, and location
technologies. This three-part categorization, which seeks to
expand the predominance of smart technology-enabled
advanced healthcare systems, includes large databases,
servers, cloud integration, network streams, and the inclusion
of different service devices and control systems. Ensuring a
reliable and effective smart healthcare framework is
contingent upon the proper distribution, administration, and
control mechanisms of these technologies. Therefore, it is
crucial to prioritize the necessity for recognition and
mitigation of the risks posed by the cyber-attacks associated
with 10T in this regard. Protecting patients and everyone
involved in the healthcare system depends on promptly
detecting and eliminating such risks.

In the field of IoMT security, the CICIoMT2024 dataset
[6] is a trailblazing benchmark that represents a coordinated
effort to enhance the development and validation of security
solutions tailored for healthcare systems. This dataset contains
the outcomes of 18 well-planned attacks against an lIoMT
testbed, including 40 real and simulated devices. The dataset
captures the diversity and intricacy of healthcare’s digital
infrastructure. The dataset incorporates multiple protocols
such as Bluetooth, MQTT, and Wi-Fi, underscoring its
diversity and alignment with real healthcare communication
standards. We methodically categorize the attacks into five
major categories: DDoS, DoS, Recon, MQTT, and Spoofing,
enabling an organized approach to analysis and mitigation.
The primary objective of the CICIoMT2024 dataset is to
improve the security of healthcare systems, making it a very
important resource for both researchers and practitioners in the
field. The seminal work by Dadkhah et al. [7] delineates the
CICIoMT dataset, which stands as a crucial resource curated
from diverse loT devices, providing a comprehensive
overview of the methodology employed. The rigorous
planning, implementation, and data collection represent
significant advancements in the field of medical loT. Dadkhah
et al. [7] emphasize the importance of the CICIoMT2024
dataset, which was an important contribution to the IoMT
dataset because it provided a thorough collection of real-time
attacks on loMT devices as well as extensive loMT profiling.
This groundbreaking endeavor greatly improves the current
state of the IoMT dataset landscape. This underscores the
urgent need for robust and adaptable security solutions to
safeguard the confidentiality and precision of medical records
and services, particularly as our world becomes increasingly
interconnected. Our primary aim is to employ various machine
learning models for dataset analysis, effectively detecting
diverse attack classes, thereby contributing to enhancing the
security of loMT devices within healthcare facilities.

2. LITERATURE REVIEW
The application of 10T technology in healthcare offers a
substantial array of devices for both patients and healthcare

workers. These devices gather tremendous amounts of data
during different phases of their functioning and preserve
confidential patient information, presenting significant
security risks. In keeping with the many uses and intricacies of
medical 10T, the produced datasets cover a broad range of
categories. 10T device cyberattacks take advantage of flaws in
operational controls and communication protocols, which
expose critical industries to significant risk and could lead to
catastrophic effects including loss of data, service interruption,
or even complete data destruction [4]. Hussain et al. [8]
commonly employ traditional security measures either at the
network or host level. While host-level security is often
stronger, the limited resources and processing capabilities of
10T devices frequently make it hard to implement. This means
that, as network-based cyberattacks are the most common
danger to the security of healthcare 10T data, network-based
security techniques are preferred for safeguarding 10T items.

Over an extensive period of time, researchers have
aggregated network traffic data from diverse loT devices,
meticulously capturing, organizing, and analyzing various
forms of attacks to construct datasets tailored for security
purposes and intrusion detection systems [9]. Prominent
examples of such attack datasets include the TON IloT
Datasets [10], the lIoT Network Intrusion Dataset [11], the RT
IoT 2022 dataset [12], the Bot-loT dataset [13], and the
CoAP-DoS dataset [14]. The WUSTL EHMS 2020 Dataset
[15], the ECU-IoHT dataset [16], BlueTack [17], the ICU
dataset [8], the IEC dataset [18], CIC-10T2023 [19], and the
CIC IoMT 2024 dataset [7] are some of the most important
IoMT attack datasets. The Canadian Institute of Cybersecurity
[6] manages the CICIoMT 2024 dataset, which stands out as a
recent and extensive IoOMT dataset [7]. The authors of the
study stress how important the CICIoMT2024 dataset is,
pointing out that it has a lot of real loMT devices that can be
attacked in different ways and that it could be used to make
full 1oMT pro- files. The dataset comprises network traffic
data from 40 medical 10T devices, consisting of 25 authentic
and 15 simulated devices. The dataset encompasses 18 distinct
types of loT attacks, categorized into five distinct attack
categories: DoS, DDoS, MQTT, spoofing, and reconnaissance.
The collection also contains device profiling, allowing the
identification of issues with specific devices at various points
in their lifespan throughout the healthcare network.

In their study, Dadkhah et al. [7] discuss the significant
contributions of their research, which include the creation of a
large IoMT attack dataset, the utilization of novel methods to
simulate attacks on the IoMT, the development of IoMT life-
cycle profiles to enhance comprehension, and the application
of several models to assess the dataset from various
perspectives. However, they see the possibility of future
improvement, especially by delving further into machine
learning (ML) algorithms and approaches. By utilizing state-
of-the-art ML algorithms and evaluation metrics, our research
aims to enhance this assessment. Specifically, we focus on the
six-category classification present in the CICIoMT2024
dataset: Benign, DoS, DDoS, MQTT, Recon, and Spoofing.
Our work aims to aid in the efficient identification of various
attack classes within the IoMT environment by utilizing
cutting-edge ML algorithms with an optimal selection of
parameters and extensive assessment metrics.

Anwer et al. [20] compiled a thorough analysis of the
methods used to identify ML attacks on the IoT. The analysis
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provides six main approaches, notably supervised learning,
unsupervised learning, ensemble learning, semi-supervised
user learning, reinforcement learning, and active learning. For
our study, we’ve decided to use supervised learning in our ML
methods to detect threats in the I0MT space. The choice is
based on the meticulous organization of the CICIoMT dataset,
which provides separate CSV files that outline various types
of attacks. Many algorithms for ML have been extensively
used for the detection of 10T attacks. These algorithms include
Random Forest [7,20,21,22,23], Logistic Regression [7,22,23],
k-Nearest Neighbors [21,23,24], Naive Bayes [21,23], Support
Vector Machines (SVM) [20,21,24], Gradient Boosting
[7,20,22], LSTM-based model [19], and Neural Networks
[7,21,22,24]. The objective of our research is to
comprehensively evaluate these ML algorithms by employing
them to detect IoMT attacks. Subsequently, we will
meticulously evaluate the performance of several ML models
through rigorous testing utilizing diverse techniques in order
to choose the most effective one.

3. METHODOLOGY

3.1 Dataset Information

The CICIOMT 2024 dataset [6] is a complete benchmark
for evaluating the security of IoMT devices used in healthcare
facility scenarios. The dataset comprises simulated instances
of actual attacks on a testbed consisting of 40 IoMT devices.
This ensures the seamless integration of these devices into
vital healthcare infrastructure. This dataset uses attack
simulation to evaluate the widely used Bluetooth Low Energy
(BLE), WiFi, and MQTT protocols in healthcare. Creating a
practical benchmark dataset was the primary objective of that
project in order to facilitate the creation and evaluation of
IoMT security solutions.

The CICIoMT2024 dataset, a tabular dataset in CSV
formats, contains information relevant to cybersecurity
incidents classified into three levels: binary (based on benign
and attacks), categorical (based on six distinct classes), and
attacks (based on 19 attack types). The zipped dataset we
obtained from the official website of the dataset [6] was
structured with two folders, ‘train’ and ‘test’, each containing
51 and 21 CSV files, respectively. Each entry in the dataset
corresponds to a singular occurrence of a cybersecurity
instance, and there are 45 columns that include various
features linked to each instance. The study of Dadkhah et. al.
[7] extensively covers the specific characteristics and statistics
of the features. Our study focused only on the Wi- Fi/MQTT
data in the dataset, conducting a variety of attacks against
MQTT-simulated devices and Wi-Fi-equipped IoMT devices.

In terms of class categorization, the dataset can be divided
into three classification levels into distinct classes. The binary
categorization divides the data into benign (non-attack) and
attack categories. The multiclass classification classifies the
data into six specific categories: DDoS (Distributed Denial of
Service), DoS (Denial of Service), MQTT (Message Queuing
Telemetry  Transport), benign  (non-attacks),  recon
(Reconnaissance), and spoofing. The categorization of the data
into multiple attack types, which produced a total of 19 classes
for the multitype classification, was one of the most
meticulous contributions to the dataset. These classifications
are the most common types of cybersecurity risks encountered
in loT-based network infrastructures.

Upon closer examination of the dataset and its data for
each classification level, a notable imbalance between classes
becomes apparent, as visually depicted in the supplementary
bar plot in Figure 1. The dataset exhibits a significant class
imbalance at each level of classification, with the attack
classes (e.g., DDoS and DoS type classes) being the most
prevalent. This indicates an unequal distribution of
cybersecurity incidents across various classes at different
classification levels. The presence of class imbalance presents
difficulties in training and evaluating ML models since these
models might exhibit biases towards the dominant class,
resulting in poorer outcomes for the minority classes. The
importance of the CICIoMT2024 dataset goes beyond its
originality, as it possesses vast potential to tackle critical
cybersecurity concerns in the healthcare domain. The dataset
is a fundamental resource that researchers, as well as
professionals, can use to build and assess strong security
solutions that protect healthcare systems from emerging and
forthcoming cyberattacks.
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3.2 Data Preprocessing

Following the multitype classification level, the
downloaded dataset comprised training and test data in several
directories, with many CSV files based on 19 distinct class
types inside each folder. After reviewing the CSV files and
multiple class types, we discovered no feature mismatches.
Additionally, we discovered that the dataset had no null or
missing values, obviating the need for additional data
cleansing. Following statistical analysis and visualization of
features’ unique value densities, we discovered that the feature
‘Drate’ had a value of zero in every dataset instance; hence,
we removed it from the training data. Next, we implemented
the data segregation procedure to classify the dataset into three
distinct levels. Based on the requirements of the classification
level, we separated the training and test data and created three
levels of distinct databases: binary, multiclass, and multitype.
Subsequently, we combined the training data into a single
CSV file and the test data into a separate CSV file for each of
the databases. In order to streamline our machine learning
approach, we inserted a new column named ‘class’ into the
combined dataset. We assigned the various class labels as
values for each of the three categorization levels. Different
classes from all three levels of classification are shown in
Table 1. The combined training data for each categorization
level exhibited a significant data imbalance, as seen in Figure
1. To address the severely unbalanced dataset, we next put the
SMOTE balancing approach into practice, as covered in the
next subsection 3.3. We meticulously organized the data and
reduced the complexity of the class labels by encoding them to
facilitate the assessment process after the machine learning
algorithm was trained.

Table 1. Three level of Categorization of the CICIoMT2024
dataset
Multi Class

Benign

Binary Class
Non-Attack

Multitype Class

Benign

DoS TCP

DoS ICMP

DosS DoS SYN

DoS UDP

DDoS TCP

DDoS ICMP

DDoS SYN

DDoS UDP

Ping Sweep

Recon VulScan

OS Scan

Port Scan
Malformed Data
DoS Connect Flood
DDoS Connect Flood
DoS Publish Flood
DDoS Publish Flood
ARP Spoofing

DDoS
Attack

Recon

MQTT

Spoofing

3.3 Data Balancing

One of the most common challenges in machine learning,
especially in classification tasks, is the uneven distribution of
classes within datasets. In the CICloMT2024 dataset, Figure 1
clearly illustrates the substantial class imbalance across the
three categories: binary, multiclass, and multitype. ML models
are severely hampered by this imbalance, mainly because of
their innate bias in favor of the majority class. Consequently,
training models on datasets with an uneven distribution often

results in poor performance and erroneous predictions. An
imbalanced distribution of classes in the CICIoMT2024
dataset might lead to biased model outputs while building and
evaluating security solutions. This issue weakens the
trustworthiness and effectiveness of security systems, thereby
jeopardizing the precision and reliability of healthcare
cybersecurity measures that depend on this type of dataset. To
make sure that the security solutions derived from the
CICIoMT2024 dataset work and are reliable, it is important to
address the issue of class imbalance. We utilize the Synthetic
Minority Over-sampling Technique (SMOTE) to rectify the
imbalance in the CICIoMT2024 dataset. SMOTE is a widely
used technique for addressing the issue of unbalanced datasets
by creating artificial samples for minority classes. SMOTE
addresses the issue of class imbalance by generating synthetic
instances along the line segments that connect the nearest
neighbors of k individuals from a minority class. This
approach minimizes the emergence of bias while effectively
resolving the problem. We expect that SMOTE will improve
the robustness and generalization capacity of ML models
trained on the CICIoMT2024 dataset by mitigating imbalances
across binary, multiclass, and multitype categories.
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The application of SMOTE to the CICIoMT2024 dataset
results in a substantial reduction in class imbalance across all
categories. Specifically, before SMOTE, the binary class
exhibited a significant gap of over 6.7 million samples
between the two classes. However, after applying SMOTE,
both classes achieve balance with a total of 6.9 million
samples each. Similarly, SMOTE balances all six classes in
the multiclass category, which had class im- balances ranging
from 3 to 4.7 million samples. Additionally, in the multitype
class, which originally had imbalances of up to 1.6 million
samples between classes, SMOTE achieves balance across all
19 classes, with each class containing a total of 1.6 million
samples. Figure 2 shows the evenly distributed classes across
three different class categories after applying SMOTE. This
transformation not only addresses the inherent biases in the
dataset but also enhances its suitability for training robust and
reliable machine learning models for 1oMT security
applications. In conclusion, the application of the SMOTE
technique effectively mitigates class imbalance within the
CICIoMT2024 dataset, thereby improving the dataset’s
suitability for training machine learning models.

3.4 Machine Learning Models

In this study, we attempted to apply the most widely used
and appropriate machine learning algorithms in many research
studies (such as [25] and [26]) to evaluate the dataset at three
distinct categorization levels. We thus picked seven machine
learning algorithms: AdaBoost, k-Nearest Neighbors (k-NN),
Logistic Regression (LR), Naive Bayes, Random Forest (RF),
ANN-based Support Vector Machine (SVM-ANN), and
XGBoost. To help understand our work better, we have
included a brief discussion of the algorithm explanations
below.

AdaBoost (Adaptive Boosting): AdaBoost is an
ensemble learning technique that combines numerous weak
learners to produce a powerful classifier. The way it operates
is that weak learners are successively fitted to learners that are
modified frequently, and the sum of all the weak learners
yields the final prediction. AdaBoost prioritizes the most
challenging situations for upcoming learners by giving more
weights to occurrences that are erroneously identified. A
weighted total of weak learners, with each learner’s
contribution determined by accuracy, makes up the final
model. The AdaBoost algorithm can be understood by the
equation below:

T

FO) =) afi(x) )

t=1

Where F (x) is the final prediction function, t is the weight
assigned to weak learner ft(x), and T is the number of weak
learners.

k-NN (k-Nearest Neighbors): An algorithm for non-
parametric classification that divides instances into groups
according to the majority class of their k nearest neighbors.
The process begins with calculating the distance between each
training instance and the test instance, after which the k
nearest neighbors are determined. The class label of the test
instance is determined by a majority vote among its neighbors.

Logistic Regression: It is a linear classification approach
that uses a logistic function to estimate the likelihood of a
binary result. It calculates the likelihood that a specific

example is a member of a specific category based on its
characteristics. Logistic regression employs a logistic function
to estimate the likelihood and generates predictions by
applying a threshold. The following equation provides a
thorough understanding of the logistic regression algorithm:

1
p(y=1[x) = 1 + e~ Bo+Baixs++Bnxn) 2

Where p(y = 1x) is the probability that the target variable
y is 1 given the input x, 0, 1, ..., n are the coefficients of the
features x1, x2, .., xn, and e is the base of the natural
logarithm.

Naive Bayes: It is a probabilistic approach to
classification that relies on the notion of feature independence
and is based on Bayes’ theorem. The algorithm computes the
likelihood of each category based on a given set of
characteristics and chooses the category with the greatest
likelihood. The following equation provides a thorough
understanding of the algorithm:

P(x|C)P(Cy)
P(x)
Where P (Ck|x) is the posterior probability of class Ck

given the features x, P (x|Ck) is the likelihood of the features

given class Ck, P (CK) is the prior probability of class Ck, and
P (x) is the probability of the features.

P(Cilx) = ©)

Random Forest: It constructs many decision trees
throughout the training process and produces the most
common class or numerical prediction where decision trees
serve as the fundamental building blocks by recursively
splitting the dataset based on feature values and constructing
the tree, aiming to create homogeneous subsets of data at each
node. The purpose is to generate sets of data that are similar at
each node. During the training process, multiple decision trees
are built, with each tree employing a random subset of the
training data and characteristics.

SVM-ANN (Support Vector Machine with Artificial
Neural Networks): It is a hybrid model that combines the
strengths of Support Vector Machines (SVMs) and Artificial
Neural Networks (ANNSs). In our implementation, the SVM
component is represented by a single fully connected layer
defined within the SVM class. This layer is initialized with a
linear transformation from the input features to the number of
classes, leveraging the margin maximization property inherent
to SVMs. This hybrid approach aims to capture both the non-
linear relationships in the data, enabled by ANNs, and the
margin-based classification characteristic of SVMs, thereby
enhancing the model’s capability for effective classification.

XGBoost (Extreme Gradient Boosting): This enhanced
gradient boosting algorithm creates numerous decision trees
progressively to repair prior errors. With a more regularized
model formulation than gradient boosting approaches,
XGBoost controls  overfitting and ensures  model
generalization to unseen data. Adding penalty terms to the loss
function penalizes complex models, promoting simpler ones.
The advanced capabilities of XGBoost include tree pruning
and column subsampling. These methods improve model
efficiency by reducing computation time and memory usage
without affecting performance.
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3.5 Evaluation Matrices

Accuracy: It is the ratio of accurately predicted instances
to the total number of instances. It provides a general
summary of model performance but may not work for
imbalanced datasets.

True Positives + True Negatives

4)

Accuracy =
Y Total Predictions

Precision: It shows the percentage of all expected
positive cases that were accurately predicted. It emphasizes
the model’s capacity to prevent false positives, which is
crucial in situations where false positives might be expensive.

Precisi True Positives (5)
recision =
True Positives + False Positives

Recall (Sensitivity): It quantifies the accuracy of
accurately predicting positive instances relative to the total
number of actual positive cases. The model’s capacity to
accurately identify all positive occurrences is brought out,
which is of utmost importance in scenarios where overlooking
a positive example can result in substantial consequences.

Recall = True Positives ©)

el = True Positives + False Negatives

F1-Score: It provides equilibrium between the two
measures and is the harmonic mean of recall and precision.
Considering both false positives and false negatives is
particularly beneficial when working with unbalanced
datasets.

FLS — o Precision X Recall ™
core = Precision + Recall

4, RESULTS

4.1 Binary Class Classification Results
Seven different machine learning models were evaluated
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to classify instances as either “Attack” or “Benign” in the
binary class classification results. The confusion matrices in
Figure 5 provide a visual representation of the performance of
each model. A higher concentration along the diagonal
indicates more accurate predictions. With an astounding
accuracy of 99.81%, AdaBoost was one of the best-
performing models; KNN came in next with an equally
outstanding accuracy of 99.66%. The SVM-ANN model
demonstrated strong performance, achieving an accuracy of
97.31%.
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This highlights its effectiveness in accurately classifying
instances. Alternatively, Logistic Regression showed a
respectable performance, although with a slightly lower
accuracy of 97.76%— almost on par with Naive Bayes’ 97%.
In addition, Random Forest showed an impressive accuracy of
99.87%, which further solidifies its dependability in binary
classification tasks. Surprisingly, XG Boost outperformed all
the other models, achieving an exceptional accuracy rate of
99.90%. The test accuracy attained by the models can be seen
clearly in Figure 3.
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Fia. 5. Confusion Matrices of all seven ML models for Binarv classification
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The analysis of accuracy for each model by class is
depicted in Figure 4. Most samples in the benign class were
correctly identified using kNN, whereas the majority of
samples in the malignant class were correctly diagnosed using
Random Forest and XGBoost models. These comprehensive
evaluations help in making well-informed decisions when
choosing the most appropriate algorithm for future binary
classification endeavors. The results highlight the
effectiveness of the machine learning models in accurately
distinguishing between “Attack” and “Benign” instances.
AdaBoost, Random Forest, and XGBoost stand out as the top
performers in terms of overall accuracy and performance.

4.2 Multiclass Classification Results

We evaluated the performance of seven machine learning
models across six distinct classes: Benign, DDoS, DoS,
Recon, MQTT, and Spoofing, for the multiclass classification
results. Normalized confusion matrices in Figure 8 were used
to test how well each model could predict, which showed how
accurate each class’s classification was. The AdaBoost model
exhibited strong performance across all classes, achieving an
overall accuracy of 99.66%. Notably, it demonstrated
exceptional accuracy in predicting Benign, DoS, and DDoS
instances, with accuracy rates of 99.68%, 99.82%, and
99.88%, respectively, which can be seen in Figure 7.

(a) AdaBoost

(b) k-NN

(e) SVM-ANN

(f) Random Forest

However, it showed slightly lower accuracy for the Recon
class at 94.96% and poor accuracy in Spoofing class at
49.94% only. On the other hand, the ANN-SVM model was
very poor at classifying instances, getting them wrong at zero
percent accuracy for most of the classes. Logistic Regression
demonstrated moderate performance, achieving accuracies
ranging from 10.84% for the MQTT class to 99.73% for the
DDosS class and zero accuracy for the DoS and Recon classes.
Random Forest emerged as one of the top-performing models,
achieving high accuracy across all classes, with notable
performance in predicting DDoS and MQTT instances at
99.99% and 99.53%, respectively. Naive Bayes demonstrated
relatively lower accuracy for the MQTT and Spoofing classes
at 4.49% and 53.55%, respectively. XGBoost exhibited robust
performance, particularly in predicting Benign and DoS
instances, with accuracies of 97.83% and 99.84%,
respectively. Additionally, k-NN achieved high accuracy
across all classes, surpassing 89% accuracy for each class
except Spoofing, with notable performance in predicting
Recon instances at 93.86%. Among the seven ML models,
AdaBoost, Random Forest, kNN, and XGboost performed
very well, with 99.6%, 99.85%, 99.79%, and 99.33%,
respectively, as shown in Figure 6. These results underscore
the varying effectiveness of ML models in classifying
multiclass data, with some models outperforming others
across different classes.
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100
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Fig. 6. Test accuracy of Multiclass Classification in models
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Fig. 8. Confusion Matrices of all seven ML models for Multiclass classification
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4.3 Multitype Class Classification Results

We assessed the performance of seven machine learning
models across a diverse set of 19 distinct classes for the
multitype classification results. Each model’s predictive
capabilities were evaluated using normalized confusion
matrices in Figure 9, providing detailed insights into the
classification accuracy for each class. The AdaBoost model
demonstrated strong performance overall, achieving an
accuracy of 95.06%. Notably, it was very good at predicting
certain types of attacks, like DoS and DDoS-based attacks,
with average 99.90% accuracy rates, respectively, and it was
also very good at classifying MQTT-DoS-Publish instances
with 100% accuracy. Conversely, the ANN-SVM model
showed limited effectiveness, particularly for classes like

Recon and MQTT, with accuracies of nearly zero percent
accuracy. Logistic Regression had the poorest performance
across classes, with accuracies ranging from maximum at zero
to 68.75% for DoS-UDP instances, as we can see in Figure 11.
Random Forest emerged as one of the top-performing models
along with XGBoost, achieving high accuracy across most
classes, with notable performance in predicting DDoS and
MQTT instances with average 99.9% and 99.99% accuracy,
respectively. Naive Bayes demonstrated relatively lower
accuracy than ANN-SVM for classes such as Recon and
MQTT-based attack types. k-NN also had great accuracy
across all classes, beating 60% accuracy for all but MQTT-
DDoS-Publish. It did especially well at predicting benign,
DoS, and DDoS instances. Figure 10 exhibits that Random
Forest and XGBoost are the best at classifying multitype
classes. These results underscore the varying effectiveness of
machine learning models in classifying multitype data, with
certain models demonstrating superior performance across
different classes.
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5. DISCUSSION

The models displayed different levels of performance at
the binary classification level. AdaBoost, Random Forest, and
XGBoost were the top-performing models, with accuracy rates
of 99.81%, 99.87%, and 99.90%, respectively. These models
showed impressive abilities in differentiating between attacks
and non-attack instances. ANN-SVM and Logistic Regression
demonstrated slightly lower accuracies of 97.31% and
97.76%, respectively. However, they still performed well in
effectively classifying binary data. k-NN achieved a high
accuracy of 99.66%, showcasing their strong performance in
the diverse landscape. Nevertheless, the accuracy of ANN-
SVM was the lowest at 99.66%. Overall, all seven models
performed very well in binary classification among attack and
benign samples, with all of them surpassing 97% accuracy for
this classification task. This shows the high resiliency and
efficiency of the ML models in classifying binary class
attributes in the CICIoMT2024 dataset.

For multiclass classification, KNN, AdaBoost, XGBoost,
and Random Forest emerged as the top-performing models,
with accuracy rates of 99.33%, 99.66%, 99.79%, and 99.85%,
respectively. These models showed exceptional performance
in accurately categorizing in- stances across various classes,
showcasing their adaptability and efficiency in dealing with a
wide range of data categories. The performance of Logistic
Regression, ANN-SVM, and Naive Bayes was moderate, with
accuracies ranging from 66.75% to 68.35%. Furthermore,
these models have lower accuracy; among the six classes, such
as DoS and MQTT, they were unable to classify relatively few
class instances. It is also clear that not every ML model was
effective in classifying the multiclass features in the dataset.

Random Forest and XGBoost have demonstrated their
superiority as the most effective models in multitype
classification, attaining an exceptional accuracy rate of 99.2%.
This illustrates their remarkable ability to correctly categorize
instances in each of the 19 classes. In addition, both KNN and
AdaBoost demonstrated remarkable performance, attaining
respective accuracies of 96.74% and 95.06%. The models
proved to be versatile and efficient in handling complex
situations with a variety of data categories. Accuracy was
lower for Logistic Regression, Random Forest, and k-NN,
indicating rather poor performance at this level of
classification. Additionally, the analysis reveals that as the
number of classes increased, the effectiveness of Naive Bayes,
ANN-SVM, and Logistic Regression models in classifying
classes decreased proportionally. This indicates that these
models did not exhibit resilience across the three classification
levels, unlike AdaBoost, Random Forest, kNN, and XGBoost
models.

Overall, Random Forest, AdaBoost, kNN, and XGBoost
outperformed all the other models in all three classification
levels, positioning them as strong contenders for the top
models. Their impressive performance emphasizes their ability
to handle a wide range of classification tasks within the
CICIoMT024 dataset, demonstrating their versatility and
reliability with medical 10T device attack classification.
Therefore, these four models could be used for further
advancement to classify all of the classes efficiently by
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implementing ensemble
learning.

learning or hybrid ML model

6. CONCLUSION

This study aims to thoroughly investigate the security
aspects of medical 10T devices, namely in the healthcare
industry, using the cutting-edge CICIoMT2024 dataset. The
emergence of the loT has culminated in significant and
extensive improvements in numerous fields, offering
exceptional efficiency and convenience while also giving rise
to concerns over cybersecurity. Given the rapid increase in
0T usage, it is crucial to prioritize the protection of these
interconnected devices from cyber threats. Our study makes a
substantial contribution to this effort by specifically
addressing the security concerns that are inherent in loMT
systems and presenting strong solutions that utilize ML
techniques. Our work aimed to improve healthcare systems’
security by identifying and reducing cyber threats using
sophisticated ML models. After a thorough analysis of the
CICIoMT2024 dataset, we have identified the most optimal
ML models for three distinct classification tasks: binary,
multiclass, and multitype. This dataset comprises a diverse
array of genuine and simulated attacks on IoMT devices. The
results of our study highlight the efficacy of ensemble learning
techniques, such as AdaBoost, Random Forest, kNN, and
XGBoost, in accurately categorizing occurrences across
various attack types. These models have shown exceptional
ability to recover quickly and adjust to new situations,
highlighting their potential for use in real-world scenarios to
strengthen the security of medical 10T ecosystems.

Although our study has been successful, it is important to
acknowledge several limitations that should be considered for
future research efforts. The use of a single dataset, which
might not adequately capture the wide variety of cyberthreats
present in IoMT environments, is one significant drawback.
For example, we have gathered the WiFi and MQTT attack
data from the CICIoMT website; nevertheless, our study does
not classify all forms of attacks on 10MT devices because it
does not include the Bluetooth traffic data. Furthermore, the
effectiveness of ML models can vary depending on the
dataset’s unique attributes and types of attacks. In order to
overcome these restrictions, future research could focus on
creating more extensive datasets and investigating innovative
ML techniques specifically designed to tackle the distinct
issues presented by security in medical 10T. Overall, our study
is a groundbreaking endeavor to enhance the security of loMT
devices in healthcare facilities. With the help of the
CICIoMT2024 dataset and advanced ML methods, our
research demonstrated that using hybrid learning can
effectively protect medical 10T networks from cyberattacks
and make them more resilient. Our research lays the
foundation for future studies focused on developing robust
security solutions that safeguard the privacy, accuracy, and
accessibility of healthcare data and services in an increasingly
linked world.
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