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1. INTRODUCTION 

As known, the conventional relational database model 

(CRDB), as in [1] and [2], is very useful for modeling, 

designing and implementing large-scale systems, but it is 

limited for representing and handling uncertain and imprecise 

information in practice. Currently, there have been many non-

conventional database models, including probabilistic 

relational database models (PRDB), studied and built to 

overcome the limitation of CRDB. For example, in [3] authors 

proposed a PRDB model to compute the uncertain membership 

degree of each tuple in a relation, and in [4] authors introduced 

another PRDB model that can compute the uncertain degree of 

attribute values of each tuple in a relation. Probabilistic 

database models also have been used in many real applications, 

such as the works in [5] and [6]. More particularly, in [5] 

probabilistic databases were applied for detecting faulty 

sensors, and in [6] queries over the relational cross model were 

processed by using uncertain databases.  

Probabilistic relational database models are developed and 
built as extensions of CRDB based on the probability theory. 
There are two main types of PRDB models extended from the 
CRDB model. The first one defines a probabilistic relation as a 
set of tuples such that each tuple is associated with a probability 
to express the uncertainty degree of it in the relation. The 
second one defines a probabilistic relation as a set of tuples such 
that each tuple attribute is associated with a probability to 
represent the uncertainty degree of the values that it may take. 

The first PRDB model type is the extension of CRDB at 
the relation level, as the works in [7], [8] and [9], thereby each 
tuple of a relation was associated with a probability in the 
interval [0, 1] to express the uncertainty membership degree of 
that tuple for the relation. The uncertainty degree of the attribute 
values of a tuple was inferred from the uncertainty membership 
degree of that tuple. However, in many real situations, we do 
not know exactly the probability as a number in the interval [0, 
1] but only can estimate it as an approximate number in a 
subinterval of [0, 1]. The models in [10], [11], [12] and [13], 
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were extended with probability intervals associated with each 
tuple to overcome the shortcoming.  

The second PRDB model type is the extension of CRDB at 
the attribute level, as the works in [14] and [15], thereby each 
value of an attribute was assigned to a probability in the interval 
[0, 1] to represent the uncertain level for that attribute taking the 
value. More flexibly and generally, in [16], each attribute was 
associated with a probability distribution on a set of values to 
express the possibility that the attribute might take one of values 
of the set with a distributed probability. However, in many real 
cases, we cannot define precisely the probability distribution 
function for each value in the set but only can estimate it as an 
approximate number in a subinterval of [0, 1]. The model in 
[17] overcame the restriction by using a pair of lower and upper 
bound probability distribution functions to represent the 
possibility that an attribute might take a value in a set with a 
computed probability interval from the distribution function 
pair.  

As we know, in the CRDB model, the relational attribute 
can take a set of values [1]. In other words, the CRDB model 
can allow multivalued attributes. However, in above presented 
PRDB models, the attribute of a tuple or an object only took a 
single, unique value in a set of values with some probability. 
For instance, the authors in [16] represented the attribute 

DISEASE of the patient Mary by DISEASE: {{d1, d3}, 0.6, 

{d2}, 0.4} to say that Mary’s disease was either d2 with a 
probability 0.4 or one of {d1, d3} with a probability 0.6. 
According to the meaning of this presentation, the model in [16] 
did not allow the attributes to take multivalues or set values. In 
practice, Mary may have both d1 and d3 (not one of {d1, d3}) 
with the probability 0.6 or d2 with the probability 0.4. In 
addition, in many real situations, we cannot know exactly the 
probability for {d1, d3} and {d2} being 0.6 and 0.4, respectively 
but only can estimate these probabilities as approximate or 
imprecise numbers in subintervals of [0, 1]. Recently, the 
models in [18] and [19] have been proposed to overcome the 
shortcomings of the models in [16] and [17] by representing the 
value of each relational attribute as a set of sets associated with 
two probability distribution functions. However, when the 
relations have many attributes, the number of generated 
probability distribution functions is too large to lead the low 
performance in manipulating data of the model.     

Although there are many PRDB models proposed and built 
as mentioned above, but no model would be so universal that 
could include all measures and tackle all aspects of uncertainty 
of information in the real world.      

In this paper, we propose a new probabilistic relational 
database model for uncertain and imprecise information, named 
UIRDB, as an extension of CRDB with probability intervals for 
uncertain set-valued attributes to overcome the limitations of 
models in [16], [18] and [19]. The UIRDB model is consistent 
with CRDB model by allowing multivalued attributes and more 
flexibly than the models in [16], [18] and [19] by using 
probability intervals instead of probability single values and 
distribution functions.  

Our proposed UIRDB model is a second type PRDB 
model. To build UIRDB, we extend the definition of the 
probabilistic value on a set in [20] to the new definition of the 
probabilistic value on a set of sets (i.e., the definition of the 
extended probabilistic value) for representing uncertain set-
valued attributes of relations and employ probabilistic 

interpretations of binary relations on sets in [18] to define the 
selection expressions and conditions for computing uncertain 
and imprecise data. The combination operators of probability 
intervals in [18] are also used to build the new selection 
operation for manipulating and querying uncertain and 
imprecise information on UIRDB relations. 

The UIRDB has the capability of expressing uncertain 
information better than the first type PRDB models, as in  [10], 
[11], [12] and [13], since using probabilistic values instead of 
certain, single values. Moreover, the UIRDB also has the ability 
of querying uncertain data more effectively than the second 
type PRDB models, as in [17], [18], and [19], since computing 
on probability intervals instead of on probability distribution 
function pairs.   

The new built UIRDB model is able to represent and 
manipulate effectively uncertain and imprecise information and 
can be applied to solve problems in real databases.        

The mathematical base for UIRDB is presented in Section 
2. Schemas and relations of UIRDB are defined in Section 3. 
The methodology for building the data model, defining the 
selection operation and query on UIRDB is introduced in 
Section 3. Section 4 shows out the achieved results and 
discussion of UIRDB model. Finally, Section 5 concludes the 
paper and outlines further research directions in the future.  

 
2. PROBABILITY DEFINITIONS 

The mathematical base for UIRDB model includes some 
probability definitions and notions for representing and 
handling uncertain and imprecise information. 

2.1 Extended Probabilistic Values   

For expressing uncertain set-valued attributes in UIRDB, 
probabilistic values over a set in [20] are extended to 
probabilistic values over a set of sets as follows. 

Definition 1. Let  be a data type and D be the domain of 

, an extended probabilistic value on the domain of  is a finite 
set of pairs {(v1, [l1, u1]), …, (vm, [lm, um])}, where vi belongs to 

2D, vi and vj are disjointed and 0  li  ui  1, for every i, j = 1, 
2, …, m. 

Informally, an extended probabilistic value pv = {(v1, [l1, 
u1]), …, (vm, [lm, um])} says that pv’s value is exactly one 
member (set) vi of the set V = {v1,…, vm} and the probability 
that pv’s value is vi lies in the interval [li, ui]. Thus, an extended 
probabilistic value represents both the uncertainty of its value 
and the imprecision of the probability for that value. An 
extended probabilistic value pv = {(v1, [l1, u1]), …, (vm, [lm, 
um])} corresponds with a probability distribution function p 

over V = {v1,…, vm} such that p(vi)  [li, ui], i = 1,…, m and 

viV p(vi)  1. 

Example 1. While examining a patient, a doctor may be 
unsure about what disease the patient is suffered from. 
However, if the doctor is sure that the patient’s diseases are 
hepatitis and cirrhosis with a probability between 0.5 and 0.7 or 
cholecystitis with a probability between 0.3 and 0.5, then this 
knowledge may be encoded by the extended probabilistic value 

{(hepatitis, cirrhosis, [0.5, 0.7]) , ({cholecystitis}, [0.3, 
0.5])}.  

We note that an element e in D is also considered as a 
special set {e} on D, thus an extended probabilistic value 
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{({e1}, [l1, u1]), ({e2}, [l2, u2]),…, ({ek}, [lk, uk])} can be written 
as {(e1, [l1, u1]), (e2, [l2, u2]),…, (ek, [lk, uk])} for simplicity.  
Also, “an extended probabilistic value” is called “a probabilistic 
value”.   

2.2 Probabilistic Interpretation of Binary Relations on Sets 

For computing the uncertain degree of relations on attribute 
values in UIRDB, we use the probabilistic interpretation of 
binary relations on sets in [18] as below. 

Definition 2. Let A and B be sets, U and V be value 

domains, and  be a binary relation from =, , , , , , , 

. The probabilistic interpretation of the relation A  B, 

denoted Pr(A  B), is a value in [0, 1] that is defined by 

1. Pr(A  B) = p(u  v| uA, vB), where A is a subset of U, 

B is a subset of V and   =, , , , ,  assumed to be 

valid on (UV), p(u  v| uA, vB) is the conditional 

probability of u  v given uA and vB. 

2. Pr(A  B) = {
𝑝(𝑢  𝐵| 𝑢𝐴),  is  

𝑝(𝑢  𝐴| 𝑢𝐵),  is  
  

where A and B are two subsets of U, p(u  B| uA) is the 

conditional probability for uB given uA and p(u  A| 

uB) is the conditional probability for uA given uB. 

We note that the probabilistic interpretation of binary 
relations on sets defined here is an extension of that in [12] with 

relations “” and “”, meanwhile no probabilistic 
interpretation of binary relations on sets was introduced in [17].   

Example 2. Let A = {4, 5} and B = 5, 6 be two sets on 
the domain {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Then 

Pr(A = B) = p(u = v| uA, v  B) 

                 = p(u=v|u{4, 5}, v5, 6) 
                 = 0.25.  

Pr(A  B) = p(u  v| uA, v  B) 

         = p(u v|u{4, 5}, v5, 6)  
       = 0.75. 

Pr(A  B) = p(u  B| uA) 

                 = p(u5, 6u{4, 5}) 
       = 0.5. 

2.3 Combination Strategies of Probability Intervals  

In many real situations, the probability of an event may not 
be defined or computed exactly [21] and [22], a probability 
interval can be used instead of a precise single probability 
value. Let two events e1 and e2 have probabilities in the intervals 
[l1, u1] and [l2, u2], respectively. Then the probability intervals 

of the conjunction event e1  e2, disjunction event e1  e2, and 

difference event e1  e2 can be computed by alternative 
strategies. In this work, we use the conjunction, disjunction, and 

difference strategies given in [20], where , , and ⊖ denote 
the conjunction, disjunction, and difference operators, 
respectively and in turn defined as follows. 

1. Independence conjunction, disjunction, and difference 

strategies, denoted in, in, and ⊖in respectively, are 
determined by: 

• [l1, u1] in[l2, u2] = [l1 . l2, u1 . u2] 

• [l1, u1] in[l2, u2] = [l1 + l2  – (l1 . l2), u1 + u2  – (u1 . u2)] 

• [l1, u1] ⊖in[l2, u2] = [l1 . (1 – u2), u1 . (1– l2)] 

2. Mutual exclusion conjunction, disjunction, and difference 
strategies (when e1 and e2 are mutually exclusive), denoted 

me, me, and ⊖me respectively, are determined by: 

• [l1, u1] me[l2, u2] = [0, 0] 

• [l1, u1] me[l2, u2] = [min(1, l1 + l2), min(1, u1 + u2)] 

• [l1, u1] ⊖me[l2, u2] = [l1, min(u1, 1 – l2)] 

3. Positive correlation conjunction, disjunction, and 
difference strategies (when e1 implies e2, or e2 implies e1), 

denoted pc, pc, and ⊖pc respectively, are determined by: 

• [l1, u1] pc[l2, u2] = [min(l1, l2), min(u1, u2)] 

• [l1, u1] pc[l2, u2] = [max(l1, l2), max(u1, u2)] 

• [l1, u1] ⊖pc[l2, u2] = [max(0, l1 – u2), max(0, u1 –l2)] 

4. Ignorance conjunction, disjunction, and difference 

strategies, denoted ig, ig, and ⊖ig respectively, are 
determined by: 

• [l1, u1] ig[l2, u2] = [max(0, l1 + l2 – 1), min(u1, u2)] 

• [l1, u1] ig[l2, u2] = [max(l1, l2 ), min(1, u1 + u2)] 

• [l1, u1] ⊖ig[l2, u2] = [max(0, l1 – u2 ), min(u1,1– l2)] 

In the following sections, the notation [l1, u1]  [l2, u2] 

is used to denote l2  l1 and u1  u2. Also, a single probability 
value p can be treated as the probability interval [p, p] and 
the operation p.[l, u] is computed as [p.l, p.u]. 

 

3. PROPOSED METHODOLOGY 

The proposed UIRDB including the data model and query 
operations is defined and built by extending the conventional 
relational database model [2] using the probability definitions  
and notions presented above.  

3.1 UIRDB Data Model 

As CRDB data model, UIRDB data model is a structure 
including fundamental components as the schema, relation and 
database.   

A UIRDB schema consists of a set of relational attributes 
respectively associated with domains that define (extended) 
probabilistic values of those attributes. The UIRDB schema is 
extended from that of CRDB with uncertain set-valued 
attributes as follows.  

Definition 3. A UIRDB schema is a pair R = (U, ), where  

1. U = {A1, A2, …, Ak} is a set of pairwise different attributes.  

2.  is a function that maps each attribute A  U to the set of 
all (extended) probabilistic values on the domain of A.  

For simplicity, the notation R(U, ) and R can be used to 

denote R = (U, ), the domain of A is denoted by dom(A). 

A UIRDB relation is an instance of a UIRDB schema, 
where each relational attribute is associated with a probabilistic 
value to represent an uncertain value set that the attribute may 
take. The UIRDB relation is extended from that of CRDB in [2] 
with uncertain multivalued relational attributes as the following 
definition.    

Definition 4. Let U = {A1, A2, …, Ak} be a set of k pairwise 
different attributes. A UIRDB relation r over the schema R(U, 

) is a finite set of elements {t1, t2,…, tn}, where each ti = (pvi1, 
pvi2,…, pvik) is a list of k probabilistic values such that pvij 

belongs to the set (Aj) for every i = 1, 2, …, n and j =1, 2,…, 
k.  

Each element t in the relation r over R(U, ) is called a 
tuple on U. For each tuple ti, the probabilistic value pvij 
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represents the uncertain valued set of the attribute Aj of the tuple 
ti. We write ti.Aj or ti[Aj] to denote pvij.   

Note that, if we only care about a unique relation over a 
schema then we can unify its symbol name with its schema’s 
name. 

Example 3. In the database about patients at the clinic of a 
hospital, a simple UIRDB relation, named PATIENT, over the 
UIRDB schema PATIENT({NAME, AGE, DISEASE, 

D_COST}, ) can be given as Table 1. In the relation, the 
attributes NAME, AGE, DISEASE and D_COST describe the 
information about the name, age, disease and daily treatment 
cost of each patient, respectively. In reality, while diagnosing, 
the disease of each patient is not always determined certainly 
by the physicians. Similarly, the daily treatment cost for patients 
is also not known definitely even the patients know about their 
diseases. For instance, the information of the patient John says 
that John’s age is 65, the patient’s disease may be lung cancer 
or tuberculosis with the probability 0.5 and John has to pay the 
daily treatment cost $30 with the probability between 0.3 and 
0.6 or $35 with the probability between 0.4 and 0.7.  

Table 1. Relation PATIENT 

NAME AGE DISEASE D_COST 

{(John, 

[1, 1])} 
{(65, [1, 1])} 

(lung cancer, [0.5, 

0.5]),  (tuberculosis, 

[0.5, 0.5])} 

($30, [0.3, 0.6]), 

($35, [0.4, 0.7])} 

{(Paul, 

[1, 1])} 

{(43, [0.5, 

0.5]), (44, [0.5, 
0.5])} 

{(hepatitis, cirrhosis, 

[0.5, 0.7]), 

({cholecystitis}, [0.3, 

0.5])} 

{($6, [0.4, 0.6]), 

($7, [0.4, 0.6])} 

{(Helen, 

[1, 1])} 
{(43, [1, 1])} (cholecystitis, [1, 1])} {($8, [1, 1])} 

{(Selena, 
[1, 1])} 

{(15, [1, 1])} 
{(bronchitis, angina, 

[1, 1])} 
{($12, [0.5, 0.5]), 
($13, [0.5, 0.5]} 

{(Alice, 
[1, 1])} 

{(36, [1, 1])} 
(duodenitis, [0.4, 0.5]), 

(gastritis, [0.5, 0.6])} 

{($8, [0.3, 0.5]), 
($9, [0.5, 0.7])} 

 

Note that, for each attribute A in the schema PATIENT, 

(A) includes all extended probabilistic values on the domain 
of A (Definition 3). In other words, each attribute A in the 
relation PATIENT is associated with an extended probabilistic 
value {(v1, [l1, u1]), …, (vm, [lm, um])} for A taking some vi with  
a probability in the interval [li, ui]. For instance, the value of the 
attribute DISEASE of the patient Paul represented by 

{(hepatitis, cirrhosis, [0.5, 0.7]), ({cholecystitis}, [0.3, 0.5])} 
says that  Paul’s diseases may be hepatitis and cirrhosis with the 
probability between 0.5 and 0.7 or cholecystitis with the 
probability between 0.3 and 0.5. In the patient database, we can 
query uncertain and imprecise information about patients such 
as “Find all patients who are not over 45 years old and have 
cholecystitis with a probability of at least 0.3” or “Find all 
patients who are over 40 years old with a probability of at least 
0.9, and have both hepatitis and cirrhosis and pay the daily 
treatment cost not less than 6 USD with a probability between 
0.4 and 0.7” and so on. The formal query langue for the UIRDB 
model will be defined in the next section to answer the queries. 

The UIRDB relational database is defined as an extension 
of CRDB with uncertain set-valued attributes as follows. 

Definition 5. A UIRDB relational database over a set of 
uncertain set-valued attributes is a set of UIRDB relations 
corresponding to the set of their UIRDB schemas.  

3.2 Selection Operation and Queries on UIRDB 

As in CRDB model, the selection is a basic algebraic 
operation in UIRDB model for querying data on relations of 
databases. The selection operation as the formal query langue 
in UIRDB is extended from that of CRDB taking into account 
uncertain set-valued relational attributes. Before defining the 
selection operation, we present the formal syntax and semantics 
of selection expressions and conditions as below.    

Definition 6. Let R be a UIRDB schema and X be a set of 
relational tuple variables. Then selection expressions are 
inductively defined and have one of the following forms:  

1. x.A  c, where x  X, A is an attribute in R,  is a binary 

relation from {=, , , , , , , }, c  2D, and D is the 
domain of A.    

2. x.A1 = x.A2, where x  X, A1 and A2 are two different 

attributes in R, and  is a probabilistic conjunction 
strategy.  

3.   , where  and  are selection expressions on the same 

relational tuple variable, and  is a probabilistic 
conjunction strategy.  

4.   , where  and  are selection expressions on the same 

relational tuple variable, and  is a probabilistic 
disjunction strategy. 

Example 4. Consider the schema PATIENT in Example 
3, the selection of “all patients who get bronchitis and pay the 
daily treatment cost over 10 USD” can be represented by the 

selection expression x.DISEASE = bronchitis  x.D_COST  
10. 

Now, selection conditions in UIRDB are formally defined 
based on selection expressions as follows.  

Definition 7. Let R be a UIRDB schema. Then selection 
conditions are inductively defined as follows: 

1. If  is a selection expression and [l, u] is a subinterval of 

[0, 1], then ()[l, u] is a selection condition.  

2. If  and  are selection conditions on the same tuple 

variable, then , (  ), (  ) are selection conditions.   

Example 5. Given the schema PATIENT in Example 3, 
the selection of “all patients who are over 50 years old with a 
probability of at least 0.7 or have lung cancer and pay the daily 
treatment cost not less than 35 USD with a probability from 0.4 

to 0.6” can be done using the selection condition (x.AGE  

50)[0.7, 1.0]  (x.DISEASE = lung cancer  x.D_COST  
35)[0.4, 0.6].  

The probabilistic interpretation (i.e., semantics) of 
selection expressions in UIRDB is defined using the 
probabilistic interpretation of binary relations on sets as below. 

Definition 8. Let R be a UIRDB schema, r be a relation 
over R, x be a tuple variable, and t be a tuple in r. The 
probabilistic interpretation of selection expressions with 
respect to R, r and t, denoted by ProbR,r,t, is the partial mapping 
from the set of all selection expressions to the set of all closed 
subintervals of [0, 1] that is inductively defined as follows:    

1. ProbR,r,t(x.A  c) = ⊕𝑖=1
𝑘 [li, ui].Pr(vi  c), where t.A = {(v1, 

[l1, u1]), …, (vk, [lk, uk])} and  is the mutual exclusion 
probabilistic disjunction operator. 

2. ProbR,r,t(x.A1 = x.A2) = ⊕𝑖=1
𝑚 ⊕𝑗=1

𝑛 (([l1i, u1i]  [l2j, 

u2j]).Pr(v1i = v2j)), where t.A1 = {(v11, [l11, u11]), …, (v1m, 
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[l1m, u1m])}, t.A2 = {(v21, [l21, u21]), …, (v2n, [l2n, u2n])} and 

 is the mutual exclusion probabilistic disjunction 
operator. 

3. ProbR,r,t(  ) = ProbR,r,t()  ProbR,r,t().  

4. ProbR,r,t(  ) = ProbR,r,t()  ProbR,r,t(). 

We note that the probabilistic disjunction operator me is 
used in the item 1 and 2 of Definition 8 because the intervals 
[l1, u1], …, [lk, uk] represent a probability distribution function 
over {v1,…, vk}, likewise for [l11, u11], …, [l1m, u1m] and [l21, 

u21], …, [l2n, u2n]. Intuitively, ProbR,r,t(x.A  c) is the probability 
interval for the attribute A of the tuple t having a (set) value vi 

such that vi  c, while ProbR,r,t(x.A1 = x.A2) is the probability 
interval for the attributes A1 and A2 of the tuple t having values 
v1i and v2j, respectively, such that v1i = v2j. 

Example 6. Let R denote the schema PATIENT and r 
denote the relation PATIENT in Example 3. Consider the 
second tuple in r, denoted by t2. We have 

ProbR,r,t
2
(x.DISEASE = cholecystitis) 

= [0.5, 0.7].Pr(hepatitis, cirrhosis= cholecystitis) 

me[0.3, 0.5].Pr(cholecystitis = cholecystitis) 

= [0.5, 0.7]0.0 me [0.3, 0.5]1.0  

= [0, 0] me [0.3, 0.5]  
= [0.3, 0.5].  

The satisfaction (i.e., semantics) of selection conditions in 
UIRDB is defined as below.  

Definition 9. Let R be a UIRDB schema, r be a relation 

over R, and t  r. The satisfaction of selection conditions under 
ProbR,r,t is defined as follows:  

1. ProbR,r,t ⊨ ()[l, u] if and only if (iff) ProbR,r,t()  [l, u]. 

2. ProbR,r,t ⊨  iff ProbR,r,t ⊨  does not hold.    

3. ProbR,r,t ⊨    iff ProbR,r,t ⊨  and ProbR,r,t ⊨ . 

4. ProbR,r,t ⊨    iff ProbR,r,t ⊨  or ProbR,r,t ⊨ . 

Note that, in CRDB, the concepts of the selection 
expression and selection condition are identical, where 
probability intervals [l, u] in selection conditions to be always 
equal to [1.0, 1.0]. This also means that the satisfaction of 
selection conditions in CRDB is a special case of that in 
UIRDB. 

Now, the selection operation on a relation in UIRDB is 
defined as follows. 

Definition 10. Let R be a UIRDB schema, r be a relation 

over R, and  be a selection condition over a tuple variable x. 

The selection on r with respect to , denoted by ®, is the 

relation r* = t  r  ProbR,r,t ⊨  over R, including all satisfied 

tuples of the selection condition . 

Example 7. Let r denote the relation PATIENT in Example 
3 and R denote its schema. The query “Find all patients who are 
not over 45 years old and have cholecystitis with a probability 
of at least 0.3” can be done by the selection operation 

(PATIENT), where  = (x.AGE  45 in x.DISEASE = 
cholecystitis)[0.3, 1.0]. 

There are two patients denoted by the second and third 
tuples (t2 and t3) of the relation PATIENT in Example 3 satisfies 

, because: 
For t2, we have  

ProbR,r,t
2
(x.AGE  45) 

 = [0.5, 0.5]Pr(43  45) me [0.5, 0.5]Pr(44  45) 

 = [0.5, 0.5]1.0 me [0.5, 0.5]1.0 = [1.0, 1.0].       
From the result of the computation in Example 6, we get 

ProbR,r,t
2
(x.DISEASE = cholecystitis) = [0.3, 0.5]. 

Hence 

ProbR,r,t
2
(x.AGE  45 in x.DISEASE = cholecystitis) 

       = ProbR,r,t
2
(x.AGE  45) 

       in ProbR,r,t
2
(x.DISEASE = cholecystitis) 

 = [1.0, 1.0] in [0.3, 0.5]  = [0.3, 0.5]  [0.3, 1.0].  

Thus t2 satisfies . 
For t3, we have  

ProbR,r,t
3
(x.AGE  45) 

      = [1.0, 1.0]Pr(43  45)  = [1.0, 1.0]1.0 = [1.0, 1.0].      
ProbR,r,t

3
(x.DISEASE = cholecystitis) 

      = [1.0, 1.0]Pr(cholecystitis = cholecystitis) 

      = [1.0, 1.0]1.0 = [1.0, 1.0]. 
Hence  

ProbR,r,t
3
(x.AGE  45 in x.DISEASE = cholecystitis)  

= ProbR,r,t
3
(x.AGE  45) 

in ProbR,r,t
3
(x.DISEASE = cholecystitis) 

= [1.0, 1.0] in [1.0, 1.0] = [1.0, 1.0]  [0.3, 1.0].  

Thus t3 satisfies .   

For the other tuples, one has ProbR,r,t
i
(x.AGE  45 in 

x.DISEASE = cholecystitis) = [0, 0]  [0.3, 1.0], i  2, 3. 
Thus, the result of the query is as Table 2. 

Table 2. Relation  (PATIENT) 

NAME AGE DISEASE D_COST 

{(Paul, 
[1, 1])} 

{(43, [0.5, 

0.5]), (44, [0.5, 

0.5])} 

{(hepatitis, cirrhosis, 

[0.5, 0.7]), 

({cholecystitis}, [0.3, 

0.5])} 

{($6, [0.4, 0.6]), 
($7, [0.4, 0.6])} 

{(Helen, 

[1, 1])} 
{(43, [1, 1])} (cholecystitis, [1, 1])} {($8, [1, 1])} 

Example 8. Let r denote the relation PATIENT in Example 
3 and R denote its schema. The query “Find all patients who are 
over 40 years old with a probability of at least 0.9, and have 
both hepatitis and cirrhosis and pay the daily treatment cost not 
less than 6 USD with a probability between 0.4 and 0.7” can be 

done by the selection operation (PATIENT), where  = 

(x.AGE  40)[0.9, 1.0]  (x.DISEASE  {hepatitis, cirrhosis} 

in x.D_COST  6)[0.4, 0.7]. 

Only one patient denoted by the second tuple t2 of the 

relation PATIENT in Example 3 satisfies , because:  

ProbR,r,t
2
(x.AGE  40) 

    = [0.5, 0.5]Pr(43  40) me [0.5, 0.5]Pr(44  40) 

    = [0.5, 0.5]1.0 me [0.5, 0.5]1.0 = [1.0, 1.0]  [0.9, 1.0].       

ProbR,r,t
2
(x.DISEASE  {hepatitis, cirrhosis}) 

    = [0.5, 0.7].Pr(hepatitis, cirrhosis  hepatitis, cirrhosis)  

    me [0.3, 0.5].Pr(cholecystitis  hepatitis, cirrhosis) 

   = [0.5, 0.7]1.0 me [0.3, 0.5]0.0  

   = [0.5, 0.7] me [0, 0]  = [0.5, 0.7].  

ProbR,r,t
2
(x.D_COST  6) 

     = [0.4, 0.6]Pr(6  6) me [0.4, 0.6]Pr(7  6) 

     = [0.4, 0.6] 1.0 me [0.4, 0.6]1.0  

     = [0.4, 0.6] me [0.4, 0.6] = [0.8, 1.0].  
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ProbR,r,t
2
(x.DISEASE {hepatitis, cirrhosis}in x.D_COST6)  

       = [0.5, 0.7] in [0.8, 1.0] = [0.4, 0.7]  [0.4, 0.7].  

Hence, ProbR,r,t2
 ⊨ (x.AGE  40)[0.9, 1.0] and ProbR,r,t2

 ⊨ 

(x.DISEASE  {hepatitis, cirrhosis} in x.D_COST  6)[0.4, 

0.7]. Thus t2 satisfies . 

For the other tuples, one has ProbR,r,t
i
(x.DISEASE  

{hepatitis, cirrhosis} in x.D_COST  6) = [0, 0]  [0.4, 0.7], 

i  2. Thus, the result of the query is as Table 3. 

Table 3. Relation (PATIENT) 

NAME AGE DISEASE D_COST 

{(Paul, 

[1, 1])} 

{(43, [0.5, 
0.5]), (44, [0.5, 

0.5])} 

{(hepatitis, cirrhosis, 

[0.5, 0.7]), 

({cholecystitis}, [0.3, 

0.5])} 

{($6, [0.4, 0.6]), 

($7, [0.4, 0.6])} 

As for CRDB, the selection operation in UIRDB is not 
dependent on the order of selection conditions as the following 
theorem. 

Theorem 1. Let r be a relation over the schema R in 

UIRDB,  and  be two selection conditions on the same tuple 
variable, then 

   ((r)) = ((r))                (1) 

Proof: Let s = (r), by Definition 9 and 10, we have 

   ((r)) = ts  ProbR,s,t⊨   

                = tr  (ProbR,r,t⊨ )  (ProbR,s,t⊨ ) 

               = tr  (ProbR,r,t⊨ )  (ProbR,r,t⊨ )  

              = tr  ProbR,r,t ⊨  =  (r).  

Thus, the equation ((r)) = (r) is proven. The 

equation ((r)) = (r) is similarly proven. Since    

 . So, Theorem 1 is proven.□ 

 

4. RESULT AND DISCUSSION 

It easy to see that UIRDB is an extension of CRDB and the 
second type PRDB models as in [14], [15] and [16] with 
extended probabilistic values (i.e. probabilistic intervals for 
value sets). Moreover, UIRDB also has the ability of querying 
data more effectively than the second type PRDB models as in 
[17], [18] and [19]. A more detailed discussion of the obtained 
results is as below.   

4.1 Extension of UIRDB in representing and handling data  

As mentioned above, there are two main types of the PRDB 
models. The first type one, denoted by T-1PRDB, represents a 
probabilistic relation as a set of tuples whose membership 
degree is a probability in [0, 1], such as [8] and [9]. Each 
attribute of a tuple is associated with a single value to say that 
the attribute may take the value with a probability computed 
and inferred from the membership degree of the tuple. The T-
1PRDB selection operation and query are defined by extending 
directly the CRDB selection operation and query based on 
computing and combining probabilities of tuples in the T-
1PRDB relations.    

The second type one, denoted by T-2PRDB, represents a 
probabilistic relation as a set of tuples whose membership 
degree is a probability in {0, 1}, such as [4], [14] and [15] each 
relational attribute is associated with a single probability value 
as (v, p) to say that the attribute may take the value v with the 
probability p. Some extended models of T-2PRDB such as [16], 

denoted by ET-2PRDB, where each relational attribute is 
associated with a probability distribution as {(v1, p1),..., (vm, 
pm)} to say that the attribute may take one of values vi with the 
probability pi. The T-2PRDB and ET-2PRDB selection 
operation and query are defined by extending the CRDB 
selection operation and query, using operators on single 
probabilities or probability distributions for computing and 
combining probabilities of attribute values in the T-2PRDB or 
ET-2PRDB relations.             

As presented in previous sections, the proposed UIRDB 
model belongs to T-2PRDB. Each relational attribute in UIRDB 
is associated with an extended probabilistic value pv = {(v1, [l1, 
u1]), …, (vm, [lm, um])} (as a distribution of probability intervals 
on a finite set of value sets) to say that the attribute may take 
one set of values vi with a probability in [li, ui]. The UIRDB 
selection operation and query are defined by extending the 
CRDB selection operation and query, employing the 
probabilistic interpretations of binary relations on sets, the 
combination strategies of probabilistic intervals of attribute 
values (i.e. extended probabilistic values) in the C-2PRDB 
relations.   

We can see that a special extended probabilistic value in 
UIRDB as {(v1, [p1, p1]), …, (vm, [pm, pm])} with vi being a 
single value also is a probability distribution {(v1, p1),..., (vm, 
pm)} in the model [16]. Thus, UIRDB model is an extension of 
T-2PRDB models, such as [15] and [16] with extended 
probabilistic values (Definition 1 and 4). Moreover, by 
associating probabilistic intervals with attribute values (in 
extended probabilistic values), UIRDB allows representing 
both the uncertainty of attribute values and the imprecision of 
the probability for that attribute values, whereas the models as 
[15] and [16] only allow representing the uncertainty of 
attribute values but do not allow expressing the imprecision of 
the probability for that attribute values (because in {(v1, p1),..., 
(vm, pm)}, the probability for the value vi is a precise number pi). 
In addition, UIRDB model also allows uncertain multivalued 
attributes (i.e. uncertain set-valued attributes) whereas the 
models as [15] and [16] do not permit set-valued attributes. 
Fig.1 illustrates the extension of UIRDB in comparison with the 
CRDB, T-2PRDB and ET-2PRDB models.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CRDB 
Extending with 

single probability 

values 

T-2PRDB 
Extending with 

probability 

distributions 

ET-2PRDB 
Extending with 

extended probability 

values  

UIRDB 

Fig. 1.  Extension of UIRDB   
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4.2 Efficiency of UIRDB in computing and querying data  

In CRDB model, as we have known, the computing 
complexity of a selection query on a CRDB relation having n 
tuples is O(n). In ET-2PRDB models, such as the model in [16], 
since each relational attribute is represented by a probability 
distribution function of a set of values, the computing 
complexity of a selection query on an ET-2PRDB relation 
having n tuples is O(kn), where k is the cardinality of the 
domain of the distribution function.  

In UIRDB model, since each relational attribute is 
represented by a list of some values or data associated with 
probability intervals (i.e. an extended probabilistic value), the 
selection queries on a UIRDB relation, defined by the selection 
operation as in the section 3.2, are more effectively than those 
on ET-2PRDB models, where each relational attribute is 
represented by a probability distribution function of a set of 
values. The computing complexity of a UIRDB selection query 
is a polynomial under the size of probabilistic relations and it is 
as effective as the computing complexity of a CRDB selection 
query. Indeed, because the computation time that a tuple holds 
or does not hold a selection condition is bounded above by some 
constant under the constant of some probability intervals of 
relational attribute values (Definition 8 and 9), then the cost for 
the selection of each tuple in a UIRDB relation (Definition 10) 
also is some constant or O(1). From that, the computing time 
complexity of a selection query on a UIRDB relation having n 
tuples is O(n).   

Because each relational attribute of T-2PRDB models is 
represented by a single probability value, these models (e.g.,  
[14], [15]), are special cases of UIRDB model. Consequently, 
the computing complexity of a selection query on a T-2PRDB 
relation having n tuples also is O(n). However, in the models 
[17], [18] and [19] that each relational attribute is represented 
by a probability distribution function pair of a set of values,  the 
computing complexity of a selection query on a relation having 
n tuples is O(kn), where k is the cardinality of the domain of the 
distribution function pair. 

Table 4 illustrates the efficiency of  a selection query on a 
relation having n tuples in CRDB, T-2PRDB, ET-2PRDB and 
UIRDB models, where k is the cardinality of the domain of a 
distribution function that represents a relational attribute value. 

Table 4. Efficiency of query on relation of database models   

MODEL 
RELATIONAL ATTRIBUTE 

VALUE  

EFFICIENCY 

OF   QUERY 

CRDB Single values O(n) 

T-2PRDB Single probability values O(n) 

ET-2PRDB Probability distributions O(kn) 

UIRDB Extended probability values O(n) 

From the discussion above, we can say that the 
performance of UIRDB model in computing and querying 
uncertain and imprecise information is good and can apply it in 
practice.     

    

5. CONCLUSION  
We have presented a new probabilistic relational database 

model extended with probability intervals for uncertain set-
valued attributes. Extended probabilistic values on the domains 
of set types have proposed to represent associating probability 

intervals with uncertain set-valued attributes. The probabilistic 
interpretation of binary relations on sets has used to define the 
selection operation for querying uncertain information 
expressed by relations of this model. The new built model  has 
the ability of representing, querying and dealing with 
effectively uncertain and imprecise data. 

In the next steps, we will extend algebraic operations in the 
conventional relational database model as the projection, 
Cartesian product, join, intersection, union, difference for the 
new model and build a management system with the language 
like SQL for querying and manipulating uncertain information 
in the real world applications.  
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