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1. INTRODUCTION 
 Natural radioactive sources present in soil, water, and air 

ubiquitously emit ionizing radiation autonomously, thus 
impacting various environmental materials and processes 
without human intervention. Among these sources is Naturally 
Occurring Radioactive Material (NORM), which comprises 
primordial radionuclides like uranium, thorium, potassium, 
and their decay products such as radium and radon [1]. These 
radionuclides, with their unstable atomic nuclei, release 
radiation energy as they stabilize, thereby permeating various 
ecological and geographical strata and influencing the 
environment in multiple ways [2]. 

Gamma radiation, a product of both the natural decay of 
primordial radionuclides and cosmic rays, is a major form of 
ionizing radiation exposure to the human body. This high-
energy radiation contributes significantly to background 

radiation levels and can penetrate deeply into biological 
tissues, disrupting cellular structures and leading to potential 
health risks, including cancer after prolonged exposure [3]. 
Furthermore, human activities such as mining, medical 
practices, and nuclear power generation exacerbate exposure 
to ionizing radiation [4], making background ionizing 
radiation (BIR) a crucial environmental factor with significant 
health implications. 

A review of previous studies reveals that radiation 
exposure assessments have been extensively conducted in both 
urban and rural settings, focusing on the health risks posed by 
background ionizing radiation. Studies by [5] and [6] have 
provided global estimates of radiation exposure, highlighting 
the contribution of natural sources to the overall radiation 
burden on the population. Recent work by [7] and [8] has 
contributed significantly to understanding radiation exposure 

Background ionizing radiation from natural sources is a pervasive environmental factor 
that poses significant health risks. Rural assessment of developing nations is often 
neglected, due to perceived lower radiation risk and limited industrialization. This study 
therefore addresses this gap by measuring the terrestrial gamma dose rates, estimate the 
radiological hazards, and predict the gamma dose rates at unobserved locations using 
Kriging Model in Ogbomoso South Local Government, a rural region within Oyo State, 
Nigeria. A systematic random sampling was conducted within 10 administrative wards. In-
situ gamma dose rate measurements were taken using a Radex, RD 1503 dosimeter and 
ArcMap was used to generate spatial map. Terrestrial average gamma dose rates (ADR) 
ranging from 0.122 to 0.139 μSvh-1, with an overall average of 0.132 μSvh-1, which is 
below the global average of 0.274 μSvh-1. The estimated annual effective dose equivalent 
ranged from 0.213 to 0.243 mSvy-1, averaging 0.231 mSvy-1, significantly below 
permissible limits of 1 mSvy-1. The spatial map of ADR distribution, ranged from 0.085 to 
0.179 μSvh-1. The study concludes that current radiation exposure level poses no 
significant radiological hazard. It recommends regular monitoring program to track 
changes over time with the data considered as baseline for Ogbomoso South local 
Government. 
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in Nigeria, particularly in regions with varying geological 
characteristics. These studies underscore the importance of 
local geology, such as the presence of granite and sedimentary 
rock formations, which are rich in uranium and thorium, 
leading to elevated radiation levels. 

In rural regions, where environmental monitoring is often 
limited because of the geographical isolation [9], there is an 
increasing need to apply geostatistical models to accurately 
map radiation levels. Kriging has emerged as one of the most 
widely used models in radiation exposure assessments due to 
its ability to interpolate radiation levels in unobserved 
locations [10, 11]. Studies by [12, 13] have applied Kriging to 
map radiation exposure in various parts of Europe and Africa, 
respectively, demonstrating the model’s versatility across 
diverse environments. These studies show that factors like soil 
composition, rock types, and land use patterns significantly 
influence spatial radiation distribution, making geostatistical 
models essential for comprehensive assessments. 

Other geostatistical tools such as the Co-Kriging and 
Inverse Distance Weighting (IDW) have also been used 
effectively to predict radiation levels in complex terrains [14, 
15]. [16] highlight the advantages of Co-Kriging in 
incorporating auxiliary variables, such as elevation or soil 
properties, to improve the precision of radiation exposure 
maps. Moreover, studies by [14, 17] have successfully applied 
IDW in areas with sparse sampling data, showing that it can 
provide reliable results when Kriging data are insufficient or 
unreliable. These methods further demonstrate the importance 
of selecting appropriate geostatistical tools based on the 
characteristics of the study area. 

In Nigeria, previous research has utilized geostatistical 
models to assess radiation exposure, particularly in urban and 
industrial areas. [18, 19] explored the spatial distribution of 
gamma radiation in both densely populated and rural settings, 
linking variations in radiation levels to geological factors and 
human activities like mining and agriculture. However, rural 
areas remain understudied, and comprehensive eco-
radiological baselines for regions like Ogbomoso South Local 
Government are lacking. This study seeks to address this gap 
by applying the Kriging model to estimate the gamma dose 
rates in Ogbomoso South, thereby providing a spatially 
detailed analysis of BIR levels, facilitating targeted 
assessments and interventions to mitigate potential health risks 
and help the policymakers to assess radiation risks and 
develop mitigation strategies [20]. 

 

2. MATERIALS AND METHODS 

2.1 Study area  

The study was conducted in Ogbomoso South Local 
Government, Oyo State, Nigeria. This area, located in the 
southwestern region of the country, lies between latitude 
8°13’0” N and longitude 4°15’0” E, covering approximately 
88 km². The study area includes 10 administrative wards 
which are: Akata, Alapata, Arowomole, Ibapon, Ijeru I, Ijeru 
II, Isoko, Ilogbo, Lagbedu, and Oke-Ola/Farm Settlement. 
These wards were selected due to their distinct geological 
formations and the variety of economic activities present, such 
as agriculture, artisanal textile production, and welding, all of 
which may contribute to the presence and distribution of 
naturally occurring radioactive materials (NORMs). The 

choice of Ogbomoso South Local Government as the study 
area is further justified by its ecological diversity comprising 
soil, water, and vegetation each of which can influence the 
accumulation and distribution of radiation. Figure 1 presents a 
map of the study area, generated using ArcMap (Version 
10.8.2). 

 

Fig. 1. Map of the study area, indicating the sampling 

locations 

2.2 Materials 

The following materials were used for data collection and 
analysis: a Global Positioning System (GPS) device, which 
was used to accurately record the geographic coordinates of 
each sampling point; a portable dosimeter (Radex RD 1503) 
equipped with a Geiger-Muller tube to measure levels of 
background ionizing radiation (BIR) at each sampling site; 
ArcMap (Version 10.8.2) for spatial analysis and the 
generation of spatial distribution maps; and Microsoft Excel 
for processing and conducting descriptive analysis of the 
collected data. 

2.3  Sampling techniques    

A total of 1,000 radiation measurements were taken from 
100 locations across the 10 administrative wards, ensuring 
even spatial distribution across the study area. At each 
location, measurements were taken randomly at 5-meter 
intervals to achieve comprehensive coverage and minimize 
spatial bias. This interval was chosen to balance the need for 
detailed spatial resolution with the practical constraints of 
fieldwork. GPS coordinates were recorded for each point, 
followed by in-situ BIR measurements using the Radex RD 
1503 dosimeter. Each location was measured twice, and the 
average reading was recorded to increase the reliability of the 
data. 

2.4 Description of the dosimeter 

The Radex RD 1503, version 10.KP.01.00.00.000 is a 
portable dosimeter featuring a Geiger-Muller detector tube, 
capable of detecting both gamma and beta radiation. The 
device operates within a temperature range of -10°C to 50°C, 
with a sensitivity range starting from 10 keV through its 
detection window and 40 keV through its casing. It can 
operate in relative humidity levels of up to 80% at 25°C. The 
dosimeter displays radiation levels in µSvh⁻¹ or µRemh⁻¹, 
making it suitable for environmental radiation assessments. 
Given its user-friendly design and built-in self-calibration, the 
Radex RD 1503 was well-suited for field measurements in the 
study area. 
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2.5 Background radiation measurement    

At each sampling site, the dosimeter was held 1 meter 
above ground level and rotated 360 degrees to capture an 
averaged background radiation reading. The device was 
allowed to complete an initial 10-second observation cycle 
before it commenced a series of 10-second measurement 
cycles. The average reading from these cycles, recorded after 
40 seconds, was logged, and later digitized for further 
analysis. This procedure was repeated consistently across all 
measurement points to ensure data uniformity. Average 
gamma dose rates (ADR) were then calculated using 
Microsoft Excel for subsequent spatial analysis. 

2.6 Determination of radiological parameters and Kriging 
Interpolation for Gamma Dose Rate Estimation    

  
2.6.1 Annual effective dose equivalent 

 
The annual effective dose equivalent (AEDE), which 

quantifies the radiation dose absorbed by individuals in the 
study area, was calculated following the standard model 
described by [21, 22] in equation 1. The calculation converts 
the recorded average gamma dose rates into an annual dose 
that reflects potential human exposure. 

𝐴𝐸𝐷𝐸 (𝑚𝑆𝑣𝑦−1) = 𝐴𝐷𝑅 × 8760 × 0.2 × 10−3 (1) 

 where ADR is the average Gamma dose rate in µSvh-1, 
0.2 is the outdoor occupancy factor, 8760 hy-1 is the 
conversion factor from hours to year, 10-3 is the conversion 
factor from µSvhr-1 to mSvhr-1. 

2.7 Kriging interpolation for gamma dose rate prediction  

Kriging, a geostatistical method, was used to estimate 
gamma dose rates at unobserved locations based on data from 
measured points. Geospatial analysis was conducted in 
ArcMap 10.8.2 using the Spatial Analyst extension in the 
Geographic Information System (GIS) environment where 
Kriging interpolation process was implemented, and spatial 
Map generated.   

Prior to applying the Kriging method, the measured data 
collected was tested for normality using histograms tool in 
ArcMap, which provided results for skewness and kurtosis to 
ensure the data met the necessary assumptions for accurate 
spatial interpolation. Data was then processed following the 
standard Kriging procedure, which includes semivariogram 
creation, model fitting, and the calculation of spatial weights 
as illustrated in Figure 2. 

 

Fig. 2. Kriging model 

A semivariogram was generated to examine the spatial 
autocorrelation of the measured data points. Theoretical model 
was fitted to the semivariogram to describe spatial continuity, 

ensuring that data from neighbouring points were 
appropriately weighted during interpolation. Weighted 
averages of the data were calculated using the fitted model, 
allowing for spatial prediction of gamma dose rates at 
unobserved locations.  

2.8 Kriging formulation 

The Kriging formulation as presented by [23, 24], is 
shown in equation (2) 

Ζ̂(𝑆0) = ∑ 𝜆𝑖𝑍(𝑆𝑖)

𝑛

𝑖=1

 (2) 

where 𝚭̂(𝑺𝟎) represents the estimated value at unobserved 
location 𝑺𝟎, 𝝀𝒊  is Kriging weight assigned to measured values 
𝒁(𝑺i) at location 𝑺𝒊. These weights are determined based on 
spatial configuration of the spatial points and the spatial 
correlation structure (semivariogram). The sum of the weight 
𝝀𝒊 equals 1, 𝒏 is the number of measured locations used to 
estimate the value at 𝑺𝟎. The Kriging interpolation technique 
was implemented by transferring the average dose rates 
(ADR) data into a Geographic Information System (GIS) 
environment. The data was processed within the Spatial 
Analyst extension module in ArcMap 10.8.2 software, where 
comprehensive spatial analysis was performed using prepared 
maps. An experimental semivariogram analysis was conducted 
to assess how spatial variability changes with distance and 
direction, which is crucial for determining the reliability of the 
generated maps. 

2.9 Model validation metrics 

The accuracy of the Kriging model was assessed through 
post-validation metrics such as the Mean Error (ME), Root 
Mean Square Error (RMSE), Mean Standardized Error (MSE), 
Root Mean Square Standardized Error (RMSSE), and Average 
Standard Error (ASE) to validate the model’s accuracy and 
reliability to produce spatial predictions. 

The formulas for these metrics are expressed in equation 
(3) to (7) 

ME   =  
1

𝑛
∑ [Ζ(𝑆𝑖)

𝑛 

𝑖=1   
 - Ζ̂(𝑆𝑖)] (3) 

MSE   =  
1

𝑛
∑   [Ζ(𝑆𝑖)

𝑛

𝑖=1
 -  Ζ̂(𝑆𝑖)]2  (4) 

RMSE   =  √
1

𝑛
∑  [Ζ(𝑆𝑖) − 

𝑛

𝑖=1
Ζ̂(𝑆𝑖)] 

(5) 

RMSSE   =  √
1

𝑛
∑  𝑛

𝑖=1 [
Ζ(𝑆𝑖)−  Ζ̂(𝑆𝑖

𝜎(𝑆𝑖)
]   

(6) 

ASE   = 
1

𝑛
∑ 𝜎(𝑆𝑖)𝑛

𝑛

𝑖=1
                    (7) 

The ME and RMSE in Equation 2.1 and 2.2 offer insights 
into the model’s bias and accuracy, respectively. An ME close 
to 0 indicates minimal bias in the model’s predictions and a 
low RMSE value signifies high accuracy [23, 24]. The MSE, 
RMSSE, and ASE in Equation 2.3 to 2.5 assess the calibration 
of the model’s uncertainty estimates [25]. An MSE near zero 
indicates that the prediction errors are centered around the 
mean values [26]. RMSE and ASE values that are reasonably 
close, along with an RMSSE value near 1, signifies that the 
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model’s predictions are well-scaled and reliable in evaluating 
performance [23,27]. Additionally, spatial visualization 
techniques like residual plot were used to further analyze the 
differences between predicted (estimated) and measured ADR 
values. 

 

3. RESULTS 

3.1 Gamma dose rate and annual effective dose equivalent 

The results of in-situ measurements of background 
ionizing radiation in Ogbomoso South Local Government 
yielded a comprehensive dataset of 1,000 readings, as 
summarized in Table 1. The results reveal the average gamma 
dose rate (ADR) and estimated annual effective dose 
equivalent (AEDE) for the study area. The ADR ranged from 
0.122 to 0.139 µSvh⁻¹, with an overall average of 0.132 
µSvh⁻¹. The estimated AEDE values ranged from 0.213 to 
0.243 mSvy⁻¹, with an average of 0.231 mSvy⁻¹ 

Table 1. Gamma dose rate and annual effective dose 
equivalent 

Location ADR (μSvh-1) AEDE (mSvy-1) 

Ijeru I 0.122 ± 0.00 0.213 

Ibapon 0.128 ± 0.01 0.224 

Isoko 0.130 ± 0.00 0.228 

Ilogbo 0.130 ± 0.00 0.229 

Lagbedu 0.131 ± 0.01 0.230 

Alapata 0.131 ± 0.02 0.230 

Arowomole 0.136 ± 0.01 0.238 

Akata 0.136 ± 0.00 0.239 

Ijeru II 0.136 ± 0.00 0.239 

Oke-Ola 0.139 ± 0.00 0.243 

Average 0.132 ±0.00 0.231 

 

3.2 Kriging metric report and spatial map of the predicted 
gamma dose date  

The results of kriging metrics report of the model’s 
accuracy are presented in Table 2. The graphical 
representations of the normality test of ADR data using 
histogram tool in ArcMap, kriging semivariogram analysis, 
residual plot, and spatial map of predicted average gamma 
dose rates (ADR) are presented in Figure 3, 4, 5 and 6.  

Table 2. Metrics report generated by Kriging interpolation 

Metrics Value 

Count 1000 

ME -0.000000712 
RMSE 0.014768321 

MSE 0.00034932 

RMSSE 1.009437264 

ASE 0.014614952 

ME - Mean Error, RMSE – Root Mean Square Error, MSE - Mean 
Standardized Error, RMSSE – Root Mean Square Standardized Error, ASE - 

Average Standard Error 

 

 
Fig. 3. Pre-validation of average gamma dose rates (ADR) 

distribution.  

            Fig. 4. Kriging semivariogram for spatial dependence 

analysis. 

 
Fig. 5. Residual plot for post-validation of kriging model 

prediction accuracy. 

 
Fig. 6.   Spatial map of predicted gamma dose rates within the 

study area 

 

4. DISCUSSIONS 
The average gamma dose rates (ADR) across the wards 

within the study area, as presented in Table 1, ranged from 
0.122 to 0.139 µSvh⁻¹, with an overall average value of 0.132 
µSvh⁻¹. This value is notably lower than the global average of 
0.274 µSvh⁻¹ [5] (Figure 7), indicating that natural 
background radiation is the dominant source in the region, 
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with minimal anthropogenic influence. However, while the 
ADR distribution appears relatively uniform, certain wards 
show notable differences. For instance, Oke-Ola (OKE) 
recorded the highest ADR at 0.139 µSvh⁻¹, while Ijeru I (IJE 
I) had the lowest at 0.122 µSvh⁻¹. These variations in ADR 
values can be attributed to differences in geological factors 
and soil characteristics across the wards, influencing the 
distribution and accumulation of naturally occurring 
radioactive materials (NORMs) [5,28]. 

Fig. 7. Comparison of the ADR values measured with global 
average 

Although the region generally shows limited 
anthropogenic influence, localized human activities such as 
artisanal mining, brick manufacturing, and agricultural 
practices which can disturb the soil and expose naturally 
occurring radioactive materials (NORMs), thereby elevating 
ADR levels in specific areas. In Oke-Ola, where crop 
cultivation is more prevalent, the higher radiation levels may 
reflect the disruption of soil and bedrock, leading to increased 
exposure to NORMs. Additionally, practices that contribute to 
soil erosion can further exacerbate this issue by transporting 
NORMs to the surface and redistributing them acre 

Geological characteristics, particularly rock composition 
and soil type, significantly influence gamma radiation levels. 
Granite-rich areas tend to emit higher levels of gamma 
radiation due to the presence of NORMs like uranium, 
thorium, and potassium [5, 29]. In contrast, Ijeru I may feature 
less granite and more sedimentary soil types, which typically 
have lower concentrations of these radioactive elements. 
Additionally, soil composition influences radon gas retention; 
clay-rich soils, common in certain parts of Oke-Ola, tend to 
trap radon gas, leading to higher gamma radiation levels, 
whereas sandy soils, which may be more prevalent in Ijeru I, 
allow radon to disperse more easily. The geological structure 
of Oke-Ola, and clay-rich soil, may thus be a key factor 
contributing to its elevated ADR. 

Furthermore, long-term environmental monitoring that 
focuses on factors such as soil moisture, land use changes, and 
seasonal variations in precipitation would enhance our 
understanding of how these conditions influence gamma 
radiation over time.  

Table 3 compares the ADR findings from this study with 
previous research conducted in the study area and other 
regions. To maintain consistency, ADR values from earlier 
studies were converted to microSieverts per hour (µSvh⁻¹). 
The highest ADR of 0.156 ± 0.03 µSvh⁻¹ was reported by 
[33], potentially due to elevated terrestrial gamma radiation 
and significant human activities like mining and industrial 
development in that area. In contrast, the lowest ADR of 0.019 
± 0.00 µSvh⁻¹ reported by [36] suggests significantly lower 

radiation levels, likely resulting from less geological NORM 
presence and minimal anthropogenic impact. 

Table 3.  Comparison of this results obtained for ADR   with 
those from other studies 

Author ADR Value 

 (µSvh-1) 

[29] 0.037 ± 0.00 

[30] 0.067 ± 0.00 

[31] 0.133 ± 0.00 

[32] 0.120 ± 0.00 

[33] 0.156 ± 0.03 

[34] 0.039 ± 0.00 

[35] 0.132 ± 0.02 

[36] 0.019 ± 0.00 

[37] 0.052 ± 0.00 

[38] 0.098 ± 0.00 

Present Study 0.132 ± 0.00 

 
The ADR value of 0.132 ± 0.00 µSvh⁻¹ for Ogbomoso 

South Local Government, found in the present study, falls 
within this range and is higher than most except for those 
reported by [31] and [33] respectively. Differences in 
geological characteristics such as varying rock compositions, 
local mining activities, and agricultural practices are likely 
major factors influencing the disparity in radiation levels 
between these regions. This highlights the importance of 
continuous monitoring to ensure public health and safety, 
particularly in areas where human activities may increase. 

Furthermore, the similarity between the ADR reported by 
[35] and the present study indicates consistency and reliability 
in the measurement methodologies, including the equipment 
and techniques used. This reinforces the accuracy of the 
findings and supports the conclusion that background ionizing 
radiation levels in Ogbomoso South Local Government, Oyo 
State, Nigeria, remain within internationally recognized safe 
limits. Continuous monitoring, particularly in areas with 
increased human intervention, will be essential to maintain 
these safety standards and address any future changes in 
radiation exposure. 

The estimated annual effective dose equivalent (AEDE) 
shown in Table 1 ranges from 0.213 to 0.243 mSvy⁻¹, with an 
average of 0.231 mSvy⁻¹. This average remains below the 
recommended limit of 1 mSvy⁻¹ (Figure 8) for public 
exposure, as suggested by [39], indicating compliance with 
internationally accepted radiation standards. Similar AEDE 
values from prior research in the study area corroborate the 
low terrestrial gamma radiation levels emitted by radioactive 
materials. The highest AEDE was found in the Oke-Ola 
(OKE) ward at 0.243 mSvy⁻¹, while the lowest was recorded 
in the Ijeru I (IJE I) ward at 0.213 mSvy⁻¹. This pattern 
mirrors the ADR distribution, demonstrating a relatively 
uniform background radiation distribution. 
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Fig. 8. Comparison of the estimated AEDE with ICRP limit.          

 
The in-depth comparisons revealed that Ijeru I (IJE I) 

exhibited the lowest ADR (0.122 µSvh⁻¹) and AEDE (0.213 
mSvy⁻¹), suggesting minimal NORM presence or industrial 
activity. Conversely, the Ibapon (IBA) ward showed slightly 
higher values, with an ADR of 0.128 µSvh⁻¹ and an AEDE of 
0.224 mSvy⁻¹, indicating marginally increased industrial 
activities. The wards Isoko (ISO) and Ilogbo (ILO) recorded 
equal ADR values of 0.130 µSvh⁻¹, with AEDEs of 0.228 
mSvy⁻¹ and 0.229 mSvy⁻¹, respectively. The Lagbedu (LAG) 
and Alapata (ALA) wards reported ADRs of 0.131 µSvh⁻¹ and 
AEDEs of 0.230 mSvy⁻¹. In contrast, Arowomole (ARO), 
Akata (AKA), and Ijeru II (IJE II) had higher ADR values of 
0.136 µSvh⁻¹ and AEDEs ranging from 0.238 to 0.239 
mSvy⁻¹, indicating additional radiation sources. The Oke-Ola 
(OKE) ward, with the highest ADR of 0.139 µSvh⁻¹ and 
AEDE of 0.243 mSvy⁻¹, suggests significant contributing 
factors to elevated radiation levels. Despite these variations, 
ADR and AEDE values remain within safe exposure limits, 
highlighting the need for continuous monitoring to identify 
and mitigate potential sources of increased radiation.  

The pre-validation analysis of the gamma dose rates 
distribution at the measured locations, illustrated in Figure 3 
revealed a skewness of -0.17265 and a kurtosis of 2.5744. The 
near-zero skewness indicates an approximately symmetric 
distribution, while the kurtosis value, slightly above 2, 
suggests a distribution that is close to normal but slightly 
platykurtic. These statistics confirm the normality and 
suitability for Kriging application. 

The Kriging semivariogram for spatial dependence 
analysis, as shown in Figure 4, indicates strong spatial 
autocorrelation in the measured gamma dose rates, evidenced 
by the low nugget value, well-defined sill, and significant 
range. This spatial dependency is crucial for the Kriging 
model, ensuring that predictions at unobserved locations are 
based on meaningful spatial relationships. The identified range 
of spatial correlation supports the model’s ability to accurately 
interpolate measured values, validating the appropriateness of 
using Kriging for this dataset. 

The metric report generated by the Kriging interpolation 
and presented in Table 2, demonstrated that the model yields 
highly accurate predictions with minimal bias. Metrics such as 
mean error (ME), root mean square error (RMSE), and mean 
square error (MSE) are close to zero, while average standard 
error (ASE) values are reasonably close to RMSE. These low 
error metrics indicate that the predicted gamma dose rate 
values closely align with the actual measurements, enhancing 
confidence in the interpolated data. Additionally, the 
proximity of the root means squares standardized error 
(RMSSE) to 1 emphasizes the model’s effectiveness in 
capturing the spatial variation of dose rates, further validating 

the reliability of the interpolated gamma dose rate values 
derived from the Kriging model. 

The residual plot in Figure 5, illustrating the differences 
between measured and predicted gamma dose rates, shows 
well-distributed residuals without obvious patterns. This 
distribution indicates that the model’s predictions are unbiased 
and reliable; systematic deviations would have suggested 
issues with accuracy, but the absence of such patterns 
confirms the model’s robustness.  

The spatial map of predicted gamma dose rates, as 
presented in Figure 6, reveals an ADR range from 0.085 to 
0.170 µSvh⁻¹, exhibiting notable spatial heterogeneity. ADR 
values between 0.132 and 0.170 µSvh⁻¹ are predominantly 
measured in the eastern and western regions of the study area, 
particularly around the Oke-Ola (OKE) ward, where ADR 
levels exceed 0.142 µSvh⁻¹, possibly due to geological 
formations or human activities. Conversely, the northern and 
southeastern parts, including the Ijeru I (IJE I) and parts of the 
Alapata (ALA), Ibapon (IBA), Lagbedu (LAG), Ilogbo (ILO), 
Arowomole (ARO), and Isoko (ISO) wards, exhibit lower 
ADR values between 0.085 and 0.123 µSvh⁻¹, attributed to 
different soil compositions, vegetation cover, or reduced 
anthropogenic influences. The spatial map illustrates a 
gradient of relatively increasing ADR from the northwest to 
the southeast, reflecting transitions in the underlying factors 
affecting gamma radiation. The presence of several measured 
locations, indicated by black dots, provides a robust dataset for 
model validation, ensuring the reliability of the Kriging 
predictions 

4.1 Limitations of the Kriging Model 

While the Kriging model is a powerful tool for predicting 
gamma dose rates in unmeasured areas, certain limitations 
must be acknowledged. The accuracy of its predictions is 
heavily reliant on the density and distribution of measured 
data points. In regions with sparse data coverage, such as the 
northern and southeastern parts of the study area, the model 
may introduce interpolation errors, potentially underestimating 
or overestimating radiation levels. Studies have shown that 
increasing the number of measured locations significantly 
improves the accuracy of Kriging predictions [39]; therefore, 
future research should prioritize increasing the spatial density 
of sampling points to enhance model reliability. 

Furthermore, the Kriging model assumes spatial 
continuity of radiation levels, which may not always hold true 
in areas experiencing abrupt geological or environmental 
changes. To address this limitation, future studies could 
explore hybrid models that combine Kriging with other 
geostatistical techniques, such as Co-Kriging or machine 
learning methods. These approaches could improve accuracy, 
especially in regions characterized by complex terrains or 
diverse land uses.  

 

5. CONCLUSION 
The application of the geostatistical kriging model in 

assessing exposure to background ionizing radiation and its 
radiological hazard indices in Ogbomoso South Local 
Government revealed that radiation levels are relatively low 
and within international safety limits, indicating no significant 
radiological hazard to the public. The findings show that the 
average gamma dose rate (ADR) and estimated annual 
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effective dose equivalent (AEDE) are 48.18% and 23.10% of 
the global averages and International Commission on 
Radiological Protection (ICRP) permissible limits, 
respectively. This suggests a lower anticipated radiation 
exposure with minimal health risks. However, the ADR 
values, ranging between 0.132 and 0.170 µSvh-1, are 
primarily observed in the eastern and western regions of the 
study area, particularly around the “OKE” ward attributed to 
geological structure and clay-rich soil contributing to its 
elevated ADR. To ensure public safety, it is therefore 
recommended that a regular radiological monitoring program 
be established in Ogbomoso South Local Government. The 
data collected from this study can serve as a crucial baseline 
for future infrastructural developments which include 
industrial facilities, water systems, and energy plants. 
Additionally, increasing the number of sampling points in 
future studies will enhance the precision of spatial predictions, 
thereby reducing uncertainties in areas with sparse data 
coverage. 
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