Simulation of Low-Power Shift Registers Using the MTCMOS Method with a Wide Selection of Transistors

Puvanaah Manokaran¹, and Ahmad Anwar Zainuddin¹

¹Department of Computer Engineering and Computer Science, School of Engineering and Computing, Manipal International University, Negeri Sembilan, Malaysia

KEYWORDS
- Shift Register
- MTCMOS
- Leakage Reduction
- Low Power

ABSTRACT

The method of huge integrating involves implementing a significant transistor count in an extremely condensed space. Combinatorial logic has shown to be particularly effective in quantum computing as well as other designing applications. In VLSI design, the primary goal is to cut down on power consumption as well as latency. For the purpose of establishing technology and supporting the increased use of electrical machines, it is vital to decrease sub-threshold current flowing for large strains. This research explores the feasibility of implementing a shift register and without the Multi-threshold CMOS (MTCMOS) approach. At the process technology of 0.18 µm, 0.12 µm, and 90 nm, an investigation into the power loss and transmission delay characteristics of a variety of flip-flops is carried out. As technology gets shrunk, the amount of power lost through leakage rises. Using the greatest technique among all run time strategies, namely MTCMOS, helps to limit the amount of power lost due to leakage. The purpose of this article is to give a comparison between various traditional flip-flops and the TSPC flip-flop with regard to power usage, diffusion delays, product of delay-power (PDP), area, and power flow using the findings obtained from the Microwind simulator.

© 2022 The Authors. Published by Penteract Technology.

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

A transistor stores and transmits bits. Switches are First in First Out incoming bit of data to the outcome with each clock signal. Flip-flops store one binary bit (1 or 0). Many flip-flops are needed to store many data pieces. Serially connecting n flip-flops saves n pieces of data. A Record stores data. Flip-flops carry several items of data. By employing control commands, these files' bits may be shifted within banks and ticket machines. Sequencing n flip-flops, each of which retains a single bit, creates an n-bit function generator. "Shift left registers" are technologies that shift elements left.

1.1 Serial in Serial Out Shift Register

A register known as a Serial-In Serial-Out shift register is one that takes serial input (single bit at a time over a specific data line) and produces serial output. Because the information exits the shift register one bit at a time in certain form of sequential manner, it is referred to as a Serial-In Serial-Out Shift Register as shown in Figure 1. A shift register that accepts sequential circuitry that produces serialized response is shown by the circuitry. This circuitry is made up of four D flip-flops that are connected in a serial fashion. A few of these flip-flops are connected with each other they have the similar clock signal out of each flip-flop, which is called "clock synchronisation." [1].

![Fig. 1. Serial in Serial Out Shift Register](image-url)
it takes sequential feedback signals from the flip-flop's side. This circuitry is featured on the main page. The major role that a SISO plays in a system is that of a delaying component.

1.2 Serial in Parallel Out Shift Register

A shift register with serial input and parallel exit is referred to as a Serial-In Parallel-Out shift register. This kind of register processes serial input (single bit per serial port) and creates parallel response. Nevertheless, a serial-in-parallel-out shift register is shown by the circuitry that follows. The logic circuitry is made up of four D flip-flops which are connected to one another. The clear (CLR) signals, which is attached to every of the four flip-flops, is linked to the clock pulse so that the whole architecture may be RESET. This is done in combination with the clock pulse. The source of one flip-flop is linked to the exit of another, etc forth. As far with each flip-flop gets a clock pulses that is comparable to another flip-flops, then these flip-flops are synced with one another [1].

![Fig. 2. Serial in Parallel Out Shift Register](image)

A shift-right register is implemented as the circuitry that can be seen in the Figure 2. These registers take serial data entry from similar side of the flip-flop and turns it into concurrent exit. Since the main purpose of the SIPO registers is to convert data bits into digital signals, these are used in network links whenever it is essential to edge a data line into numerous different connections.

1.3 Parallel in Serial Out Shift Register

A serial output is generated by a shift register that accepts concurrent input (the information arrives at each flip flop simultaneously) and generates a serial response. The logic circuitry below shows a parallel-in-serial-out shift register. In all, the circuitry comprises of 4 D flip-flops linked simultaneously. It is coupled to each of the flip-flops; however, the inputs are coupled to all flip flop individually through multiplexed at the inputs of all flip-flop. Subsequently, the outputs of the preceding flip-flop and the concurrent inputs are linked to the result of the Multiplexer. Every one of these flip-flops are simultaneous since they all get the similar clock pulses [1].

![Fig. 3. Parallel in Serial Out Shift Register](image)

To translate parallel data to serial data, a Parallel in Serial Out (PIPO) shift register is utilised as shown in Figure 3.

1.4 Parallel in Parallel Out Shift Register

Parallel-In parallel Out shift register as depicted in Figure 4 is a sequence that supports concurrent entry (data is provided individually around each flip flop and in a directly relates) and also offers a concurrent response. A parallel-in-parallel-out shift register is represented in the circuitry underneath. This circuitry is organized into four D flip-flops which are coupled simultaneously. All these flip flops are linked to the clear (CLR) and clock pulse. Because serial switching of information is essential, there are no links between the various flip-flops in this form of record. Data is provided to another flip flop independently as inputs, while outputs is likewise obtained individually of each flip-flop [1].

![Fig. 4. Parallel in Parallel Out Shift Register](image)

A PIPO shift register, similar to a SISO shift register, is used as a temporarily backup system and moreover operates as a delaying component. It performs both functions in the same manner as the SISO shift register.

1.5 Applications of Shift Registers

Below are the few areas of how shift registers have been used [2][13]:

- Technological devices are stalled utilising serial-in-serial-out and parallel-in parallel-out shift registers for transferring data and manipulation as well as interim data management.
- Whenever a single information line is demultiplexed into multiple overlapping lines, this serial-in-parallel-out encoder may be used to transform sequential to concurrent data.
- Parallel in Serial out shift register is used to convert parallel data into serial data.
2. LITERATURE REVIEW

<table>
<thead>
<tr>
<th>NO</th>
<th>Author(s) & Year</th>
<th>Title</th>
<th>Variables Studied/ Research Design</th>
<th>Important Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K. Kandula et al; (2021) [3]</td>
<td>MTCMOS Technique Based Low-Power Shift Registers</td>
<td>It is possible to reduce average transmission losses by using the optimum program execution technique. MTCMOS. TSPC flip-flop power usage, propagating durations. Products of Delay-Power (PDP), volume and line losses are illustrated in a comparison of many traditional flip-flops and TSPC flip-flops. While building systems like registers and timers, energy usage, dispersion latency, and power dissipation are mostly taken into account.</td>
<td>Since there is Technology Scaling and Voltage Scaling, the TSPC Flip-Flop has fewer circuits and a low energy consumption. This is because of limited number of transistor (5T), the brief pulses train of the time, and the limited number of transistors.</td>
</tr>
<tr>
<td>2</td>
<td>S. Gour et al; (2020) [4]</td>
<td>Reduction of Power and Delay in Shift Register using MTCMOS Technique</td>
<td>Analysis of the energy delayed in HSPICE is done using the Cosmos Scope software. Use the BPTM model files for 32 and 45nm to construct the Shift Register. Discharge energy in Shift Register may be reduced by 44 percent in 32nanometers using MTCMOS approach and by 57 percent in 45nanometers using MTCMOS method at voltages of 0.7V and 0.9V, respectively. 0.7V for 32nanometers and 0.9V for 45nanometers cut power by 5% and 21%, respectively.</td>
<td>In this study, a shift register employing MTCMOS was examined for energy usage and latency, and the results were satisfactory. The outcome may be impacted by variations in sequence scale. The use of MTCMOS to simulate shift registers at 32nanometers and 45nanometers reduces energy usage and latency. Energy usage is lowered by 44 percent and 57 percent, correspondingly, in the 32nanometers and 45nanometers processes. For 32nanometers, the suggested circuitry's latency is decreased by 5% and by 21% for 45nanometers.</td>
</tr>
<tr>
<td>3</td>
<td>S.Kanaka et al; (2017) [5]</td>
<td>Design and Implementation of Pulsed Latches Based Shift Register Using MTCMOS and GDI Techniques</td>
<td>This shift registers in this technology functions with an instatement of pulsed clock pulses. Due lower the delayed clock pulsed signals, every shift register is partitioned into several sub-shift registers. Leaking current and leaking energy may be reduced using MTCMOS and energy losses devices using Mod GDI (Modified Gate Diffusion Input) can therefore be reduced. The design is built with VERILOG programming and simulated with Tanner EDA Tools using Xilinx ISE.</td>
<td>Designers need a variable body bias technique to attain the maximum performance in static and dynamic energy. The pressurised sleep strategy improves performance in both static and dynamic electricity. As a result, the pressurised sleep approach and changing body bias are recommended for improved performance in comparison to the no bias technique.</td>
</tr>
<tr>
<td>3</td>
<td>Z.H. Jalil et al; (2015) [6]</td>
<td>Design Perspective of Low Power, High Efficiency Shift Registers</td>
<td>This paper presents a discussion of various FF designs and has been used for various shift registers (SIPO, PIPO, SISO, and PISO). This relationship between FFs parameters and shift registers is covered.</td>
<td>That document presents a discussion of various FF designs and has been used for various shift registers (SIPO, PIPO, SISO, and PISO). This relationship between FFs parameters and shift registers is covered.</td>
</tr>
<tr>
<td>5</td>
<td>Ch.Daya et al; (2012) [7]</td>
<td>Design of a Low Power Flip-Flop Using MTCMOS Technique</td>
<td>This paper explains about fast and minimal full single clocking (TSPC) Flip-Flops, which have only single transistor and are timed by just a short pulse. Because the transistors utilised are compact in size and consume little power, they can be employed in a variety of applications such as digital VLSI clocking systems, buffers, registers, microprocessors, and so on. Those Flip-Flops are examined using 90nm, 70nm, and 50nm technologies.</td>
<td>The electricity consumption of the MTCMOS D Flip-Flop with 7 Transistors is low. The DSCH and MICROWIND Tools are used to model flip-flops and latches for 90nm, 70nm, and 50nm technology nodes.</td>
</tr>
</tbody>
</table>
3. Research Methodology

Additional transistors have been squeezed into electronic circuitry capabilities as technologies developed. Circuit and electricity do not simply increase as tech advances. In today’s circuit design, leakage current is a significant source of power consumption. The switching of internal node activity causes power consumption and dynamic circuits. Every path’s charge and discharge causes switching activity [8]. Its basic circuit technique is known as non-basic pathway switches where dual VT utilises reduced devices and elevated circuitry. Every cut-off device requires many masking levels to give a distinct cut-off, which is a difficult effort owing to the complexity of the manufacturing technique [9]. By leveraging high Vth power switches, when it comes to cutting down on inactive power dissipation, MTCMOS is a very attractive option (sleep transistors). It’s easy to adapt functional prototypes to MTCMOS modules with only a few high-voltage voltage regulation valves. Furthermore, at a fine grain level of control, circuits are also easily placed in low leakage states. Over this, but also because time to market is essential, the industry has taken notice of this strategy.

They have a low Vth (LVT) logic section that is regulated by SLEEP impulses and is regulated by high Vth power devices. Lower Vth circuit are thus linked to ground potential and energy when they are triggered by high voltage devices (SLEEP=I). Fig 5 [10] shows how the sleep transistor may be used as a resistance R in active region. The sleep transistor’s current I is directly proportional to the voltage Vx at neutral point.

The voltage drop across R has two implications. Due to this bodily impact, the resistance value of LVT quick release transistors is raised due to a decrease in Vdd power rating and a rise in Vdd-Vx bodily impact pushing power [11] [12]. Consequently, the circuitry’s resistor ought to have been minimal and the sleep transistors big in order to minimise those impacts. Such, therefore, comes at the sacrifice of additional space and electricity. The circuitry’s performance degrades if the resistance is too high. A compromise must be made among the need for successful achievement and the desire to use as little electricity as possible. As in deep submicron (DSM) regime, that trade-off becomes much more apparent. That supply voltage is aggressively scaled down in DSM technologies, leading the resistance of the sleep transistor to climb considerably, necessitating increasingly larger sleep devices. Leaking and variable energy consumption may be greatly impacted in both the rest and action is right. As a consequence, it’s critical to account for the sleep transistor’s efficiency while creating the circuit.

4. RESULT AND DISCUSSIONS

The proposed MTCMOS Technique can be used for a variety different shift registers with varying scaling approaches and voltages. These schematics were created in DSCH Software and compiled in Microwind for power verification. Your simulation results are depicted there in Figures 6 until Figure 31.

![Fig. 6. 5 Transistors Flip Flop in DHCH.](image)

![Fig. 7. 10 Transistors Flip Flop in DHCH.](image)
Fig. 8. 22 Transistors Flip Flop in DHCH.

Fig. 9. 5T Flip Flop Layout in Microwind.

Fig. 10. Voltage vs Time Timing diagram of 5T Flip Flop.

Fig. 11. 10T Flip Flop Layout in Microwind.

Fig. 12. Voltage vs Time Timing diagram of T Flip Flop.

Fig. 13. 22T Flip Flop Layout in Microwind.

Fig. 14. Voltage vs Time Timing diagram of 22T Flip Flop.
Table 1. Power Consumption (in µW) of different Voltages & Technologies by MTCMOS Technique

<table>
<thead>
<tr>
<th>No of Transistors</th>
<th>0.12 µm (Technology)</th>
<th>0.18 µm (Technology)</th>
<th>90 nm (Technology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>5T-FF MTCMOS</td>
<td>3.29 7.28 2.33</td>
<td>3.29 7.28 2.33</td>
<td>3.29 7.28 2.33</td>
</tr>
<tr>
<td>10T-FF MTCMOS</td>
<td>8.61 7.31 6.01</td>
<td>8.61 7.31 6.01</td>
<td>8.61 7.31 6.01</td>
</tr>
<tr>
<td>22T-FF MTCMOS</td>
<td>28.2 22.7 17.4</td>
<td>28.2 22.7 17.4</td>
<td>28.2 22.7 17.4</td>
</tr>
</tbody>
</table>

5. CONCLUSION

In conclusion, the TSPC Flip-Flop may have less transistors and so use less energy when Technology and Voltage Scaling are utilized. This is because of the brief pulses train of the clock, which only has single transistor timed. Energy loss capacity is reduced by employing MTCMOS, an acronym for power dissipation reduction, when technologies drops down. In addition to Microwind simulated findings, another contrast of several traditional flip-flops and TSPC flipflops is presented in terms of energy efficiency, transmission delays, Product of Delay-Power (PDP), volume and etc. Researchers that used MTCMOS to measure shift register energy and latency had successful outcomes, cutting both of those metrics.

ACKNOWLEDGEMENT

The research was supported by Manipal International University's Department of Computer Science and Engineering in Negeri Sembilan, Malaysia.

REFERENCES

