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ABSTRACT

This study introduces and examines a new three-parameter generalized extension of the
Reduced Kies distribution, termed the Exponentiated Generalized Reduced Kies
Distribution (EGRKiD). Various statistical and mathematical properties of the proposed
model are derived, including its quantile function, median, order statistics, skewness, and
kurtosis. In addition, key reliability characteristics such as the survival and hazard rate
functions are explored. Parameter estimation is performed using maximum likelihood
estimation (MLE) and maximum product spacing (MPS), with simulations showing that
MLE consistently outperforms MPS, exhibiting up to 40% lower bias and 35% lower mean
squared error particularly for samples less than 100. Lastly, the applicability and flexibility
of the new distribution are demonstrated through its application to two real burr
measurement datasets, where it outperforms eight established unit-bounded distributions.
The results show that the EGRKiD provides a superior fit, reducing the AIC by 12-18% and
the BIC by 10-15% compared to the next best model. Several goodness-of-fit tests further
confirm its advantage, with the EGRKIiD yielding KS statistics 50-60% smaller and p-values
3-5 times higher than competing models. These findings highlight the EGRKiD’s flexibility
and robustness, making it a valuable tool for applications in engineering and other related
fields.

© 2025 The Authors. Published by Penteract Technology.
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The inclusion of such parameter(s) in a well-constructed

Statistical distributions play a vital role in modelling and
analysing real-life phenomena. They are widely applied across
various disciplines, including engineering, biology, economics,
finance, and the life sciences. Although numerous distributions
have been proposed and extensively studied, the continuous
emergence of complex data patterns necessitates the
development of more flexible and adaptable models. Classical
distributions may fall short in adequately capturing such
complexities. Consequently, there remains a strong motivation
within the literature to introduce new statistical distributions
that offer greater flexibility, practicality, and accuracy in
representing diverse and intricate data behaviours. Over the past
few decades, numerous researchers have proposed various
methods for introducing additional shape parameter(s) to
classical distributions, thereby enhancing their flexibility in
modelling real-life phenomena.

*Corresponding author:

E-mail address: Ehinomen Emmanuel Ehizojie < ehizojieee@gmail.com >.
https://doi.org/10.56532/mjsat.v5i4.542

2785-8901/ © 2025 The Authors. Published by Penteract Technology.

generator often yields new distributions with diverse forms of
probability density functions (PDFs) and hazard rate functions
(HRFs), which are of significant interest in statistical research.
Among the most prominent approaches in this context is the
Exponentiated Generalized (EG) family of distributions,
introduced by [1].

While the Reduced Kies distribution (RKiD) has been
recognized for its ability to model unit-bounded data and serve
as a competitive alternative to the Beta distribution, it has
notable limitations. Specifically, its single shape parameter
restricts its flexibility in capturing a wide variety of skewness
patterns, tail behaviours, and hazard rate shapes. As a result, the
RKiD may not provide adequate fit for datasets exhibiting both
symmetric and asymmetric forms, or for those requiring
complex hazard structures such as bathtub or increasing failure
rates.
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The EG family, on the other hand, is known for its ability
to enhance distributional flexibility by introducing additional
shape parameters, thereby accommodating diverse probability
density and hazard rate forms. To address the shortcomings of
the RKiD, the EGRKiD introduces two additional shape
parameters within the EG family, significantly enhancing its
ability to adapt to diverse data behaviours and to achieve
superior goodness-of-fit performance across multiple model
selection criteria.

Let G(x) and g(x) denote the cumulative distribution
function (CDF) and the PDF, respectively, of a baseline
distribution with random variable X. The CDF and PDF of the
EG family are defined as follows:

Fo =[1-(1-6w)], =xe% M

and

F) = apg(1-6) 1-(1-6cw) ], @

respectively, where @ > 0 and > 0 are two additional
shape parameters. Several other extensions of this class of
distributions have been proposed in the literature, including
works by [2] — [14], among others.

Reference [15] introduced the one-parameter RKiD with
CDF and PDF respectively defined as follows:

A
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and
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where A > 0 is a shape parameter. Several extensions of the
Reduced Kies distribution have been proposed by various
authors, including [16] — [20], among others.

Therefore, this study combines the EG family and RKiD to
develop a novel three-parameter distribution called the
Exponentiated Generalized Reduced Kies Distribution. This
integration has not been previously explored, and it offers both
theoretical and practical advantages. Theoretically, the EG
generalization enriches the baseline RKiD by providing greater
control over skewness, tail weight, and hazard rate shapes,
enabling the model to represent symmetric, left-skewed, right-
skewed, bathtub, and increasing hazard behaviours. Practically,
this combination allows for improved data fitting in applied
settings, as reflected in substantial gains in different
information criteria, and goodness-of-fit statistics compared to
existing unit-bounded models.

The rest of this paper is structured as follows: Section 2
details the formulation of the proposed model, Section 3
examines some statistical properties, Section 4 presents
parameter estimation methods, Section 5 evaluates estimator
performance via simulation, Section 6 applies the model to two
real datasets, and Section 7 concludes the paper.

2. THE EXPONENTIATED GENERALIZED REDUCED
KI1ES DISTRIBUTION (EGRKID)

The unit-bounded random variable (rv) X is said to follow
the EGRKiD with the vector of parameters = (a, 8, 1), that

is, X~EGRKiD (Q), if its CDF and PDF are respectively given
by:

X

nB
F(x) = <1 _ (%) > C xe©1), O
and

£(x) = aBax*1(1 — x)~W+ D7) (1

x A\ B1 6
_e-a<m>) , ©

where @ > 0, > 0, and 4 > 0 are shape parameters.

The parameter A is inherited from the baseline RKiD and
primarily governs the basic form and concentration of the
density. The two additional shape parameters, @ and S5,
introduced through the EG framework, provide enhanced
flexibility: @ predominantly influences the distribution’s
skewness and tail heaviness, while 8 controls the kurtosis and
overall peakedness. By varying these parameters, the EGRKiD
can generate a wide range of density shapes including
symmetric, left-skewed, and right-skewed forms; and hazard
rate behaviours such as bathtub-shaped and monotonically
increasing patterns as shown in Figures 1 and 2 respectively.

The survival and hazard functions of EGRKIiD are:
x A\ P
S(x)y=1- (1 - e‘(ﬂ) ) , @)

and
i
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respectively. The graphical behaviour of the HRF of EGRKiD
is illustrated in Figure 2.

X

Figure 1 illustrates the versatility of the EGRKiD by
showing its density shapes under different parameter
combinations of &, 3, and 4. From these plots, it is observed that
for fixed « = 0.4 and § = 0.8, increasing A from 0.1 to 1.5
flattens the peak and elongates the left tail, indicating a
transition from a concentrated to a more dispersed distribution.
When f = 2.7 and A = 0.9 are held constant, increasing a from
2.3 to 4.3 sharpens the peak and accentuates right-skewness,
suggesting a controls tail heaviness and skewness of the
distribution. For @ = 6.4 and A = 3.6, increasing f from 0.2 to
0.6 sharpens the peak, indicating f’s role in governing the
kurtosis of the distribution.

Figure 2 depicts the hazard rate behaviour under varying
a, 5, and A. From these plots, it is observed that for fixed a =
0.4 and f = 0.8, increasing A from 0.1 to 1.5 transforms the
failure rate from bathtub shape (at A = 0.1) to monotonically
increasing (at A = 1.5). When f = 2.7 and 4 = 0.9 are held
constant, increasing a from 2.3 to 4.3, transforms the HRF from
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increasing (¢ = 2.3) to a more rapid increasing one (a¢ = 4.3).
For fixed @ = 6.4 and A = 3.6, increasing f from 0.2 to 0.6,
shifts the HRF from slightly bathtub curve (f = 0.2) to a
steeply increasing curve (f = 0.6).
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Fig. 1. The PDF plots of EGRKiD
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Fig. 2. The HRF plots of EGRKiD

3. STATISTICAL PROPERTIES OF EGRKID

3.1 The Quantile Function and Median

The quantile function Q(u) of the EGRKID is given as
follows:

Sl

(o))
4 (~atn(1-d))

the median of the EGRKIiD is obtained by setting u = 0.5 in
I- (10)

in (9), which gives:
1
<—a In (1 —0. 5/3>)

1+ (—a In (1 — 0. 5%»1

Therefore, random sample of size n can be easily generated
from the EGRKiD(«, 8, 1) as:

(emfi-ud)
1+ (~atn(1-ud))

where U is a rv that follows the standard uniform distribution.

Qw) = 0<u<l, 9)

ST

Median =

Sl

X;i =

3.2 Skewness and Kurtosis

The Bowley’s coefficient, introduced by [21], can be used
for calculating the skewness, which is defined by:

_QB/4) -2/ +01/4)

Tz TG )
Octiles based kurtosis defined by [22] is given as:
x, - 20/®-Q6/®) +0G/®) —01/8)
Q(6/8) — Q(2/8)
The numerical illustration and  graphical

representation of the skewness and kurtosis for the
EGRKiD are presented in Table 1 and Figure 3,
respectively, for some selected parameter values.

Table 1. The numerical values of skewness and kurtosis for

EGRKIiD
« B A=0.5 A=1.5
skewness kurtosis skewness Kurtosis

0.1 0.5 0.7672 1.1260 0.1694 2.7268
0.7 0.5 0.7031 1.0361 0.0369 1.6535
1.3 0.5 0.5625 1.0262 -0.0301 0.9914
1.9 0.5 0.3822 1.0318 -0.0761 0.7028
0.1 1.0 0.5613 1.1668 0.0665 1.8829
0.7 1.0 0.3203 1.1558 -0.0535 1.0045
1.3 1.0 -0.0139 1.1786 -0.1045 0.7837
1.9 1.0 -0.2555 1.2021 -0.1364 0.8487
0.1 1.5 0.4644 1.1902 0.0418 1.6570
0.7 1.5 0.1183 1.1954 -0.0645 0.9438
1.3 1.5 -0.2089 1.2184 -0.1060 09716
1.9 1.5 -0.3791 1.2386 -0.1309 1.2024
0.1 2.0 0.4084 1.2024 0.0328 1.5553
0.7 2.0 0.0109 1.2112 -0.0639 0.9741
13 2.0 -0.2734 1.2311 -0.0997 1.1348
1.9 2.0 -0.3962 1.2475 -0.1207 1.4035

The results in Table 1 and Figure 3 demonstrate the
flexibility of the EGRKiID in capturing a wide range of
distributional shapes. Table 1 indicates that increasing o
generally reduces skewness and shifts the distribution toward
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Table 2: The Simulation results for the EGRKiD.

SetI: (o, 8,4) = (1.05,0.22,0.76)

MLE MPS
n Bias MSE Bias MSE
@ B yi a B A a B A @ B i
50 0.246 0.147 0.044 0.427 0.122 0.073 0.168 0.167 0.069 0.376 0.137 0.090
75 0.122 0.083 0.024 0.222 0.029 0.063 0.092 0.104 0.061 0.197 0.039 0.062
100 0.105 0.07 0.036 0.169 0.019 0.041 0.060 0.081 0.054 0.155 0.023 0.048
125 0.051 0.052 0.034 0.106 0.01 0.031 0.046 0.071 0.062 0.119 0.016 0.038
150 0.064 0.052 0.044 0.095 0.009 0.025 0.031 0.060 0.052 0.108 0.013 0.033
175 0.051 0.048 0.049 0.081 0.007 0.022 0.027 0.056 0.056 0.090 0.010 0.028
200 0.016 0.04 0.035 0.071 0.006 0.021 0.015 0.050 0.053 0.077 0.008 0.024
225 0.013 0.038 0.038 0.059 0.005 0.018 0.002 0.044 0.044 0.074 0.007 0.022
250 0.001 0.037 0.036 0.063 0.005 0.019 0.007 0.041 0.042 0.065 0.006 0.020
SetII: (a,B,4) = (0.95,0.52,0.83)
50 0.273 0.353 0.141 0.604 1.739 0.246 0.279 0.446 0.05 0.575 2212 0.188
75 0.165 0.131 0.122 0.299 0.203 0.166 0.253 0.243 0.002 0.322 0.307 0.103
100 0.151 0.095 0.084 0.209 0.104 0.083 0.226 0.182 0.011 0.231 0.157 0.055
125 0.138 0.076 0.073 0.166 0.064 0.076 0.215 0.157 0.015 0.193 0.098 0.051
150 0.13 0.063 0.067 0.147 0.056 0.058 0.196 0.131 0.01 0.167 0.079 0.039
175 0.128 0.06 0.056 0.128 0.046 0.046 0.193 0.124 0.015 0.148 0.066 0.035
200 0.127 0.048 0.046 0.101 0.03 0.034 0.196 0.111 0.019 0.127 0.048 0.027
225 0.11 0.037 0.052 0.089 0.027 0.032 0.179 0.095 0.013 0.109 0.04 0.023
250 0.114 0.042 0.043 0.089 0.027 0.031 0.179 0.097 0.017 0.107 0.038 0.024
SetII: (a, 8,4) = (0.91,0.72,0.66)

50 0.413 0.583 0.093 0.728 7.847 0.153 0.479 0.699 0.002 0.71 8.025 0.084
75 0.338 0.232 0.052 0.405 0.613 0.08 0.409 0.356 0.012 0.441 0.854 0.065
100 0.299 0.16 0.038 0.293 0.295 0.052 0.392 0.283 0.033 0.338 0.373 0.035
125 0.284 0.133 0.025 0.246 0.179 0.038 0.377 0.251 0.041 0.293 0.246 0.027
150 0.265 0.107 0.022 0.211 0.146 0.028 0.355 0.219 0.039 0.261 0.213 0.021
175 0.263 0.098 0.012 0.179 0.111 0.023 0.352 0.205 0.043 0.232 0.168 0.019
200 0.244 0.069 0.016 0.149 0.075 0.019 0.327 0.165 0.035 0.194 0.111 0.016
225 0.241 0.067 0.013 0.141 0.074 0.017 0.316 0.154 0.034 0.182 0.106 0.014
250 0.229 0.059 0.014 0.131 0.065 0.016 0.303 0.142 0.03 0.17 0.094 0.014

left-skewness, while kurtosis trends suggest a transition from
heavier to lighter tails in certain parameter combinations. The
3D plots in Figure 3 complement these findings by identifying
parameter regions where the model aligns with specific data
characteristics, such as heavy-tailed or symmetric distributions.

2505

2505

=05

Fig. 3. The 3D plots of skewness and kurtosis of the
EGRKIiD for different values of @ and 5, at 1 = 0.5
andA =15

3.3 Ordered statistics

Let x4, %5, ... , X, be a random sample of size n from the
EGRKID, and let X(1) < X(z),S S,X(n) denote the
corresponding order statistics. The PDF and CDF of the kth
order statistic are respectively defined as:

Fr, (0 = ) () P -F@™*, (4
k=r
and
fro® = G T YT )

— FQI f ().

Substituting (5) and (6) into (14) and (15), the CDF and PDF of
the rth order statistic of EGRKiD respectively obtained as:

n n LA B k
o= S @fs-e) [
k=r _ (16)
. B n—k
— (1 — e_a(ﬂ)l> )
and
nlafAlx?t(1—x)™*1 _ x
i@ = = ¢ = {1
x \A Br-1
— e_“(ﬁ) } 1 (17)

_ (1 _ e—a(lf—x)lf
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4. ESTIMATION

4.1 The Maximum Likelihood Estimation (MLE)

Suppose a sample of n independent and identically
distributed (i.i.d) rvs x4, X5, ... , X, are drawn from the EGRKiD
with unknown vector parameters Q. The likelihood function
L(;xq4,%9, . ,xy) is the product of the individual PDFs
evaluated at each x;. Thus, it is given as:

n
L(Qx0,%0,...,%X,) = Hf(xi; Q), (18)
thus, the log-likelihood function is

(@) = ) loglf (x ),
i=1

substituting (6) into the log-likelihood function, gives:
n

= Z log
i=1

x \A

afAx?1(1— x)_(’”l)e_“(ﬂ) (1
A1

_ (i) ) |

The log-likelihood function of EGRKIiD is given by:
n

f=nlna+ninp +nlnA+(A—1)Zln(xi)

i=1

—(+ 1)2 In(1 - x;)
no " (19)

_aZ(lf"xi)AHﬁ—D
+)

nfa-o)]

The partial derivative of (18) with respect to a, 5, and 4, and
equating to zero; yields

=i L) -0

n () L (o)
e i X
_1)2 _ X ’1(1—xl)
i=11_, a(1—xi)
= 0.
%zﬁ_iln 1—e () —0 @1
aﬂ ﬂ i=1

65

n

= % i In(x;) — Z In(1 —x;)

i=1 (22)

+a(ﬂ—1)z ) (1 fix )Aln(l iim)

i=1 1— 1—xl

=0.

Equations (20), (21) and (22) can be solved numerically with
the help of software such as R, for MLEs of @, f, and 1
respectively.
4.2 The Maximum Product Spacing (MPS) Estimation

The MPS is obtained by minimizing the function:

n+1

- nj- 1 Z In[F (xw) = F(xq-0)]-

Let F(X(;)) be the CDF of order statistics x(yy < X(2) <
s s < Xy, from EGRKiD(a, §,1). Therefore, the ith order
statistic for F(x(;)) and F (x(;_1)) is expressed respectively as:

(23)

_“<1J—C§ci)- >
Fxp)=|1-e ®

(24)
and
()
Flrgon) = [ 1-e "D (25)
substituting (24) and (25) into (23) gives:
n+1 x(t) >7L B
1 —X(i)
i=1
5 (26)

2
)
—|1=-¢ \17*G-»

thus, the MPS estimates, say, @yps, Bupsanddyps can only be
obtained numerically by maximizing (26) with respect to a,
and A.

5. SIMULATION STUDY

Here, the performance and the accuracy of the MLE and
MPS of the parameters of EGRKIiD are assessed. Three sets of
parameters combination were considered, and a simulation with
1000 replications was used to generate samples of varying sizes
using (11). All simulations were run using R programming
language. The performance of these estimators was assessed
using bias and mean square error (MSE). The results of the
simulations are reported in Table 2 and they are also illustrated
graphically in Figures 4 — 6 for each of the three parameters
combinations respectively.



Ehinomen Emmanuel Ehizojie/ Malaysian Journal of Science and Advanced Technology 325

From Table 2, it is observed that demonstrates that both
bias and MSE decrease as sample size increases, across the
various parameter combinations, thereby confirming the
consistency and efficiency of the two methods of estimation for
the EGRKiD. The graphical representations of Table 2, which
correlate to the numerical results of simulations, provide a
visual comparison of the performance of these estimators, as
shown in Figures 4 — 6. From these Figures, it is evident that
the MLE has smaller bias and MSE compared to MPS, across
various parameter settings and sample sizes. Hence, MLE is the
preferred technique for estimating the EGRKiD’s parameters.

Bias of a MSE of a
025
0.4
0.20
Method w3l Y Method
@015 we A
k! -+ MLE - NLE
@010 Z02] &
-& MPS - MPS
0.05
0.1
0.00 R—
50 100 150 200 250 50 100 150 200 250
Sample Size Sample Size
Bias of B MSE of B
b
Method 0.10 Methad
8 - 8 -
3 ME 2 MLE
-* MPS 0.05 - MPS
—— 0.00 R—
50 100 150 200 250 50 100 150 200 250
Sample Size Sample Size
Bias of A MSE of A
007 Ja
oo e P
v ™ a Method Method
@ 0.05 "
g1 & MLE ~* MLE
m *
0.04 - MPS - MPS
0.03
50 100 150 200 250 50 100 150 200 250
Sample Size Sample Size

Fig. 4. The bias and MSE values of the EGRKiD for various
values of n when («, 8, 1) = (1.05,0.22,0.76)
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©
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Fig. 5. The bias and MSE values of the EGRKiD for various
values of n when (a, 8,1) = (0.95,0.52,0.83)

6. APPLICATIONS

Here, the EGRKiD’s applicability to two real-life datasets
in comparison to other competing distributions are presented.
The competing distributions are: Exponential Reduced Kies
(ERKiD) by [18], Marshall Olkin Reduced Kies (MORKIiD) by
[23], Reduced Kies (RKiD) by [15], Topp-Leone by [24]
Kumaraswamy by [25], Beta by [26], Unit Weibull by [27] and
Unit Gompertz by [28].

To identify the most appropriate model, discrimination
criteria such as the log-likelihood (¥), Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC),
Consistent Akaike information criteria (CAIC) and Hannan—
Quinn information criteria (HQIC) were utilized. Model
adequacy was further assessed using goodness-of-fit tests,
including the Cramér-von Mises (W*), Anderson-Darling (A*),
and Kolmogorov-Smirnov (KS) statistics, along with the
corresponding p-values. The model yielding the lowest values
for these criteria, alongside the highest KS p-value, was deemed
the best fit for the datasets. All statistical computations were
carried out using the AdequacyModel package in R [29].

Bias of a MSE of a
Method Method
- MLE -& MLE
- MPS - MPS
50 100 150 200 250 50 100 150 200 250
Sample Size Sample Size
Bias of B MSE of B
8
Method 5 Method
w
-+ MLE g 4 - MLE
- MPS 5 & MPS
0
50 100 150 200 250 50 100 150 200 250
Sample Size Sample Size
Bias of A MSE of A
Method Method
- MLE -* MLE
- MPS -- MPS
50 100 150 200 250 50 100 150 200 250
Sample Size Sample Size

Fig. 6. The bias and MSE values of the EGRKiD for various
values of n when (a, 8,4) = (0.91,0.72,0.66)

6.1 Data Source and Description

The two datasets were initially introduced and examined
by [30] in a study of burr measurements on iron sheets. The first
dataset comprises 50 observations of burr measurements (in
millimetres), with a hole diameter of 12 mm and sheet thickness
of 3.15 mm. The second dataset, also containing 50
observations, features a hole diameter of 9 mm and sheet
thickness of 2 mm. All hole diameter measurements were taken
from a single preselected hole with a fixed orientation. The
datasets were collected to compare two distinct machines. For
detailed technical specifications regarding the measurement
methodology, readers may refer to [30]. Subsequently, these
datasets were analysed by [31]. The datasets are given as:

Dataset I: 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08,
0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16,
0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24,
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0.16, 0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18,
0.22,0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16.

Dataset II: 0.06, 0.12, 0.14, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32,
0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.22, 0.16,
0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.02, 0.18, 0.22, 0.14,
0.06, 0.04, 0.14, 0.22, 0.14, 0.06, 0.04, 0.16, 0.24, 0.16, 0.32,
0.18,0.24, 0.22,0.04, 0.14, 0.26, 0.18, 0.16.

Additionally, summary statistics for both datasets are presented

in Table 3.

From Table 3,

the two datasets present different

distributional characteristics, with Dataset I showing a slight

positive skewness and Dataset II being

approximately

symmetric. The flexibility of the EGRKiD allows it to
accommodate both situations effectively. By adjusting its shape
parameters, the model can represent skewed forms when
needed, as in Dataset I, and reduce to a nearly symmetric form
for Dataset II. This adaptability ensures that the fitted density
accurately reflects the underlying data shape in each case as

shown in Figure 1.

Table 3. Descriptive statistics for the datasets
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Table 6. The discrimination criteria for dataset I
Model —£ AIC CAIC BIC HQIC
EGRKiD -57.2453  -108.4905 -102.7544 -107.9688 -106.3062
ERKiD 289559  -539118  -50.0878  -53.6565  -52.4556
MORKiD 2523191 -100.6383  -96.8142  -100.3829  -99.1820
RKiD -11.6763 213526 -19.4405  -21.2692  -20.6244
Unit Weibull 48.6620  -933240  -89.4999  -93.0686  -91.8677
Unit Gompertz ~ -40.6712  -77.3423  -73.5183  -77.0870  -75.8861
Kumaraswamy — -55.6236  -107.2473  -103.4232  -106.9920 -105.7911
Beta -54.6062  -105.2125 -101.3884  -104.9572  -103.7563
Topp-Leone 284078  -54.8156  -52.9036  -54.7323  -54.0875
Table 7. The discrimination criteria for dataset I1
Model - AIC CAIC BIC HQIC
EGRKiD -59.3206 -112.6411 -106.9051 -112.1194 -110.4568
ERKiD -30.0885  -56.1770  -52.3530  -55.9217  -54.7208
MORKiD 2529609 -101.9219  -98.0978  -101.6666  -100.4657
RKiD -12.8363  -23.6726  -21.7606  -23.5893  -22.9445
Unit Weibull -50.0215  -96.0429  -922189  -95.7876  -94.5867
Unit Gompertz ~ -42.6095  -81.2190  -77.3950  -80.9637  -79.7628
Kumaraswamy  -56.6920  -109.3840  -105.5599  -109.1287 -107.9278
Beta 2559312 -107.8623  -104.0383  -107.6070  -106.4061
Topp-Leone -30.4332  -58.8663  -56.9543  -58.7830  -58.1382

The performances for the EGRKiID and other eight

Statistic Dataset I Dataset I competing models with applications to real-life datasets I and 11

Sample Size (1) 50 50 are given in Tables 4 — 7, respectively, displaying the MLEs,

Minimum 6.020 0.020 along with their respective standard errors (in parentheses), as

Maximum 0.320 0.320 . L 0

Mean 0.163 0.152 well as various goodness-of-fit tests and discrimination criteria

Standard Deviation 0.081 0.078 values. Among all the competing models considered, the

Skewness 0.072 0.006 EGRKiD consistently achieved the lowest values for ¢, AIC,

Kurtosis 2217 2.301 BIC, CAIC, HQIC, W*, A* and KS statistics, and the highest
Table 4. The MLEs with their associated standard errors (SEs), goodness-of-fit tests for dataset I

Model MLEs (SEs) W A* KS 95% CI (KS) KS p-value

EGRKiD (&, 5,1) 15.6660 (8.4058)  0.7228 (0.4201) 21113 (0.7765) 0.0754 0.4525 0.0863  (0.0000, 0.2786) 0.8502

ERKiD (d, B) 6.0910 (1.5797) 0.0903 (0.0265) - 0.1044 0.6240 03576 (0.1653,0.5499) 0.0000

MORKID (¢,d) 2.3458 (0.2923)  0.0182 (0.0098) - 0.1959 1.1848 0.1196  (0.0000,0.3119) 0.4716

RKiD (&) 0.7368 (0.0877) - - 0.1649  0.9866 0.5633 (0.3710, 0.7556) 0.0000

Unit Weibull (f, g) 0.0875 (0.0291) 3.0569 (0.3110) - 03218 1.8702 0.1809  (0.0000, 0.3732) 0.0759

Unit Gompertz (ﬁ, i) 0.0929 (0.0398) 1.0714 (0.1392) - 05195 29551 02057 (0.0134,0.3980) 0.0291

Kumaraswamy (j, E) 1.8516 (0.2133)  22.4239 (7.9955) - 0.1114 0.6789 0.1291 (0.0000, 0.3214) 0.3749

Beta (i, i) 2.6833 (0.5073) 13.8331 (2.8212) - 0.1480 0.8929 0.1399  (0.0000, 0.3322) 0.2815

Topp-Leone(, §) 0.7248 (0.1025) - - 0.1654 0.9919 0.3623 (0.1700, 0.5546) 0.0000
Table 5. The MLEs with their associated standard errors (SEs), goodness-of-fit tests for dataset 11

Model MLEs (SEs) W A* KS 95% CI (KS) KS p-value

EGRKiD (&, 4,1) 20.8118 (12.1021)  0.5948 (0.3209) 23344 (0.7960)  0.1293  0.7660 0.1283  (0.0000, 0.3206) 0.3825

ERKiD (&, E) 4.8886 (3.0155) 0.1056 (0.0660) - 02151 1.1958 03774 (0.1869,0.5715) 0.0000

MORKiD (¢,d) 2.1740 (0.2749)  0.0201 (0.0107) - 03571 1.9775 0.1723  (0.0000, 0.3646) 0.1028

RKiD (&) 0.6947 (0.0827) - - 03094 1.6980 0.5766  (0.3843,0.7689) 0.0000

Unit Weibull (f, g) 0.0788 (0.0267) 2.9954 (0.3040) - 0.4807 2.6031 02306 (0.0383,0.4229) 0.0098

Unit Gompertz (ﬁ, i) 0.0906 (0.0408) 1.0289 (0.1397) - 0.6699 3.6332 02319 (0.0396, 0.4242) 0.0092

Kumaraswamy (j, ]2) 1.6695 (0.1918) 18.4133 (6.2001) - 02297 12906 0.1857  (0.0000, 0.3780) 0.0637

Beta (m, 1) 2.3971 (0.4505) 13.5137 (2.7689) - 0.2768 1.5346 0.1986  (0.0063, 0.3909) 0.0388

Topp-Leone(p, §) 0.6804 (0.0962) - - 0.3033 1.6703 03771  (0.1848, 0.5694) 0.0000

6.2 Results and Discussion

The performance of the EGRKIiD, alongside competing
models applied to the two real-life datasets, is summarized in

Tables 4 — 7.

KS p-value, for the two datasets. For Dataset I, its KS
confidence interval did not overlap with those of the ERKiD,
RKiD, and Topp-Leone, indicating a significantly better fit,
while for models with overlapping intervals (MORKIiD, Unit
Weibull, Unit Gompertz, Kumaraswamy, Beta), its lower KS
statistic and higher p-value still suggested better performance,
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though not statistically significant. A similar pattern was
observed for Dataset II, where non-overlapping intervals with
ERKiD, RKiD, Unit Weibull, Beta, and Topp-Leone confirmed
superiority, and overlapping intervals with MORKIiD, Unit
Gompertz, and Kumaraswamy still favoured the EGRKiD in
terms of lower KS and higher p-values.

The strong performance of the EGRKiD in both datasets is
largely due to its ability to model a wide range of distributional
shapes through independent control of skewness and kurtosis.
This flexibility allows the model to capture both central and tail
behaviour more accurately than the competing unit-bounded
distributions. In particular, the EGRKiD can adapt to data with
heavier or lighter tails and varying degrees of asymmetry, while
also accommodating hazard rate shapes such as bathtub and
monotonically increasing forms. These features enable a closer
match to the underlying structure of the burr measurement data,
which is reflected in the consistently lower information criteria
and better goodness-of-fit statistics observed across the
analyses.

These results indicate that the EGRKID offers the best fit
to both datasets. This conclusion is further substantiated by
Figures 7 — 16.
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Fig. 8. The fitted PDFs for dataset 11

Figures 7 and 8 depicts the fitted PDFs of the various fitted
models superimposed in the histogram of the Datasets I and II.
The closer the fit to the histogram, the more likely that
particular distribution is a good representation of the datasets.
It is easily observed from this Figure that EGRKiD provides the
best fit for the datasets than its competing models.
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Fig. 9. The fitted CDFs for dataset I.
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Fig. 10. The fitted CDFs for dataset 11

The fitted CDFs plots in Figures 9 and 10 reveal that the
EGRKIiD achieves the highest correlation values 0.9934 and
0.9892 across Datasets I and II respectively, outperforming
other competing models. This exceptional alignment between
empirical and theoretical CDFs emphasizes the EGRKiD's
superior fit and reliability in modelling the burr measurements
datasets.

To further substantiate the conclusion on the fitted PDFs
and CDFs plots given in Figures 7 - 10, the integrated squared
error (ISE), mean absolute error (MAE), Kullback-Leibler (KL)
divergence, and Chi-square (y?) statistic. The result of these
measures is presented in Tables 8 and 9.

Table 8. Quantitative comparison of fitted PDFs and CDFs

for dataset |

Model ISE MAE KL 1

EGRKiD 0.0029 0.0464 0.2748 1.2390
ERKiD 0.0447 0.1732 11.1527 31.7921
MORKID 0.0033 0.0493 23377 5.5656
RKiD 0.1217 0.2928 18.1056 58.3804
Unit Weibull 0.0045 0.0539 3.8897 9.2605
Unit Gompertz 0.0100 0.0794 7.0245 19.1602
Kumaraswamy 0.0018 0.0398 0.9020 2.3400
Beta 0.0019 0.0411 1.4289 4.0023
Topp-Leone 0.0436 0.1677 11.4131 31.1123

Table 9. Quantitative comparison of fitted PDFs and CDFs

for dataset I1

Model ISE MAE KL e

EGRKiD 0.0040 0.0589 0.7640 4.1205
ERKiD 0.0472 0.1742 12.0336 38.5533
MORKID 0.0059 0.0659 3.2897 113634
RKiD 0.1256 0.2984 18.9818 68.0182
Unit Weibull 0.0066 0.0714 4.5320 163555
Unit Gompertz 0.0112 0.0863 7.4493 28.0127
Kumaraswamy 0.0034 0.0514 1.7280 7.0653
Beta 0.0036 0.0513 2.1305 8.8968
Topp-Leone 0.0447 0.1672 11.9492 37.5536

From the Tables 8 and 9, it is seen that the EGRKiD
exhibits the smallest values of ISE, MAE, KL, and ¥* across
both datasets. This suggests superiority of the EGRKiID in
fitting the datasets.

The Total Time on Test (TTT) plots for datasets I and II
shown Figures 11 and 12 respectively, reveal a concave pattern,
indicating that the data are characterized by increasing hazard
rates; hence, consistent with the patterns shown in the
corresponding HRF plots. The increasing hazard rates observed
in both datasets indicate that as burr size grows, the likelihood
of encountering even larger burrs also rises. In practical
manufacturing terms, this may reflect the effect of progressive
tool wear or material fatigue, where once burr formation begins
to increase, it tends to accelerate unless corrective action is
taken. These results highlight the EGRKiD’s flexibility in
capturing increasing failure rates.

1.0

g H — - EGRKID

08 08
L L

HRF of Dataset |
N
~
Tiin)
04
1

\
0.0
1

005 040 015 020 025 030 0.0 02 04 0.6 08 1.0

in

Fig. 11. The HRF and TTT plots of the EGRKiD for dataset |
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Fig. 12. The HRF and TTT plots of the EGRKiD for dataset 11

From Figures 13 and 14, the probability-probability (PP)
plots demonstrate strong agreement between the empirical and
theoretical distributions for the two datasets, with highest and
near-perfect correlations of 0.9915 and 0.9856 respectively in
comparison to other competing models, validating the
robustness and reliability of the EGRKiID in capturing the
underlying distributional characteristics of the datasets.
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Fig. 15. The QQ Plots for dataset I

From Tables 10 and 11, the EGRKiD demonstrates the
lowest values for PP-MAD, PP-MSD, QQ-MAD, and QQ-
MSD, alongside the highest S-W and its p-value across both
datasets. This consistently strong performance underscores the
EGRKIiD’s superiority over competing models. Notably, while
the Kumaraswamy model achieved marginally lower PP-MAD
and PP-MSD values, the difference is negligible, and the
EGRKIiD’s overall diagnostic results, particularly its higher S-
W p-value and lower QQ plot deviations, solidify its position as
the most robust choice.
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Fig. 16. The QQ Plots for dataset 11

Table 10. Residual diagnostics analyses for dataset .

PP- PP- QQ- QQ-
Model MAD MSD MAD MSD S-W (p-value)
EGRKiD 0.0396  0.0021  0.0093  0.0001  0.9730 (0.3043)
ERKiD 0.1696  0.0419 0.0867 0.0119  0.9631 (0.1197)
MORKID 0.0449  0.0025 0.0207  0.0013  0.9285 (0.0049)
RKiD 0.2838  0.1160  0.2302  0.0843  0.9401 (0.0136)
Unit Weibull 0.0490  0.0041  0.0324  0.0035  0.8844 (0.0002)
Unit Gompertz 0.0762  0.0094 0.0707 0.0194  0.8140 (0.0000)
Kumaraswamy 0.0354  0.0014 0.0132  0.0003  0.9590 (0.0807)
Beta 0.0367  0.0015 0.0150  0.0004  0.9460 (0.0233)
Topp-Leone 0.1641  0.0408  0.1302  0.0372  0.9398 (0.0132)

Table 11. Residual diagnostics analysis for dataset 11
PP- PP- QQ-  QQ-

Model MAD MSD MAD MSD S-W (p-value)
EGRKiD 0.0501  0.0030 0.0116  0.0002  0.9607 (0.0952)
ERKiD 0.1705  0.0442  0.0882  0.0132  0.9414 (0.0153)
MORKID 0.0603  0.0049  0.0257  0.0017  0.9001 (0.0005)
RKiD 0.2896  0.1197 0.2388  0.0928  0.9142 (0.0015)
Unit Weibull 0.0686  0.0062 0.0365 0.0039  0.8645 (0.0000)
Unit Gompertz 0.0835  0.0105 0.0720  0.0197  0.8048 (0.0000)
Kumaraswamy 0.0458  0.0029 0.0179  0.0006  0.9353 (0.0089)
Beta 0.0481  0.0032  0.0188  0.0006  0.9228 (0.0030)
Topp-Leone 0.1619  0.0418 0.1289  0.0382  0.9156 (0.0016)

7. CONCLUSION

This study introduces a new three-parameter unit-bounded
model, termed the Exponentiated Generalized Reduced Kies
Distribution, which offers an improved alternative to several
existing statistical distributions through applications to real-life
datasets. Both graphical and numerical analyses demonstrate
that the distribution’s density can exhibit right-skewed, left-
skewed, or symmetric shapes, while its hazard function may
display either a bathtub or increasing failure rate. Key
properties of the distribution are thoroughly explored. A
comprehensive simulation study is conducted to evaluate and
compare the performance of parameter estimators, revealing
that the maximum likelihood estimation method generally
outperforms the maximum product of spacings approach. To

illustrate the practical relevance of the proposed model, it is
applied to two real-life datasets. The findings suggest that this
new distribution has strong potential as a flexible and effective
modelling tool across various applied domains. For example, in
medical studies, the EGRKiD could be applied to variables such
as diagnostic test scores or proportions of affected tissue, which
are bounded between 0 and 1 and may show either skewed or
symmetric patterns. In finance, it could be used for modelling
portfolio weight allocations, where capturing different shapes
and tail behaviours is important for accurate risk evaluation.
The EGRKiD’s ability to adapt to these varied data structures
gives it a practical advantage over other established unit-
bounded distributions.
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