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1. INTRODUCTION 
Statistical distributions play a vital role in modelling and 

analysing real-life phenomena. They are widely applied across 
various disciplines, including engineering, biology, economics, 
finance, and the life sciences. Although numerous distributions 
have been proposed and extensively studied, the continuous 
emergence of complex data patterns necessitates the 
development of more flexible and adaptable models. Classical 
distributions may fall short in adequately capturing such 
complexities. Consequently, there remains a strong motivation 
within the literature to introduce new statistical distributions 
that offer greater flexibility, practicality, and accuracy in 
representing diverse and intricate data behaviours. Over the past 
few decades, numerous researchers have proposed various 
methods for introducing additional shape parameter(s) to 
classical distributions, thereby enhancing their flexibility in 
modelling real-life phenomena. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The inclusion of such parameter(s) in a well-constructed 
generator often yields new distributions with diverse forms of 
probability density functions (PDFs) and hazard rate functions 
(HRFs), which are of significant interest in statistical research. 
Among the most prominent approaches in this context is the 
Exponentiated Generalized (EG) family of distributions, 
introduced by [1]. 

While the Reduced Kies distribution (RKiD) has been 
recognized for its ability to model unit-bounded data and serve 
as a competitive alternative to the Beta distribution, it has 
notable limitations. Specifically, its single shape parameter 
restricts its flexibility in capturing a wide variety of skewness 
patterns, tail behaviours, and hazard rate shapes. As a result, the 
RKiD may not provide adequate fit for datasets exhibiting both 
symmetric and asymmetric forms, or for those requiring 
complex hazard structures such as bathtub or increasing failure 
rates.  

This study introduces and examines a new three-parameter generalized extension of the 
Reduced Kies distribution, termed the Exponentiated Generalized Reduced Kies 
Distribution (EGRKiD). Various statistical and mathematical properties of the proposed 
model are derived, including its quantile function, median, order statistics, skewness, and 
kurtosis. In addition, key reliability characteristics such as the survival and hazard rate 
functions are explored. Parameter estimation is performed using maximum likelihood 
estimation (MLE) and maximum product spacing (MPS), with simulations showing that 
MLE consistently outperforms MPS, exhibiting up to 40% lower bias and 35% lower mean 
squared error particularly for samples less than 100.  Lastly, the applicability and flexibility 
of the new distribution are demonstrated through its application to two real burr 
measurement datasets, where it outperforms eight established unit-bounded distributions. 
The results show that the EGRKiD provides a superior fit, reducing the AIC by 12-18% and 
the BIC by 10-15% compared to the next best model. Several goodness-of-fit tests further 
confirm its advantage, with the EGRKiD yielding KS statistics 50-60% smaller and p-values 
3-5 times higher than competing models. These findings highlight the EGRKiD’s flexibility 
and robustness, making it a valuable tool for applications in engineering and other related 
fields. 
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The EG family, on the other hand, is known for its ability 
to enhance distributional flexibility by introducing additional 
shape parameters, thereby accommodating diverse probability 
density and hazard rate forms. To address the shortcomings of 
the RKiD, the EGRKiD introduces two additional shape 
parameters within the EG family, significantly enhancing its 
ability to adapt to diverse data behaviours and to achieve 
superior goodness-of-fit performance across multiple model 
selection criteria. 

Let 𝐺(𝑥) and 𝑔(𝑥) denote the cumulative distribution 
function (CDF) and the PDF, respectively, of a baseline 
distribution with random variable 𝑋. The CDF and PDF of the 
EG family are defined as follows: 

𝐹(𝑥) = [1 − (1 − 𝐺(𝑥))
𝛼

]
𝛽

, 𝑥 ∈ ℜ, (1) 

and 

𝑓(𝑥) = 𝛼𝛽𝑔(𝑥)(1 − 𝐺(𝑥))
𝛼−1

[1 − (1 − 𝐺(𝑥))
𝛼

]
𝛽−1

, (2) 

respectively, where 𝛼 > 0 and 𝛽 > 0 are two additional 
shape parameters. Several other extensions of this class of 
distributions have been proposed in the literature, including 
works by [2] – [14], among others. 

Reference [15] introduced the one-parameter RKiD with 
CDF and PDF respectively defined as follows: 

𝐺(𝑥) = 1 − 𝑒−(
𝑥

1−𝑥
)

𝜆

, 𝑥 ∈ (0,1), (3) 

and 

𝑔(𝑥) = 𝜆𝑥𝜆−1(1 − 𝑥)−𝜆−1𝑒−(
𝑥

1−𝑥
)

𝜆

, (4) 

where 𝜆 > 0 is a shape parameter. Several extensions of the 
Reduced Kies distribution have been proposed by various 
authors, including [16] – [20], among others.  

Therefore, this study combines the EG family and RKiD to 
develop a novel three-parameter distribution called the 
Exponentiated Generalized Reduced Kies Distribution. This 
integration has not been previously explored, and it offers both 
theoretical and practical advantages. Theoretically, the EG 
generalization enriches the baseline RKiD by providing greater 
control over skewness, tail weight, and hazard rate shapes, 
enabling the model to represent symmetric, left-skewed, right-
skewed, bathtub, and increasing hazard behaviours. Practically, 
this combination allows for improved data fitting in applied 
settings, as reflected in substantial gains in different 
information criteria, and goodness-of-fit statistics compared to 
existing unit-bounded models.  

The rest of this paper is structured as follows: Section 2 
details the formulation of the proposed model, Section 3 
examines some statistical properties, Section 4 presents 
parameter estimation methods, Section 5 evaluates estimator 
performance via simulation, Section 6 applies the model to two 
real datasets, and Section 7 concludes the paper. 

 

2. THE EXPONENTIATED GENERALIZED REDUCED 

KIES DISTRIBUTION (EGRKID) 

The unit-bounded random variable (rv) X is said to follow 
the EGRKiD with the vector of parameters Ω = (𝛼, 𝛽, 𝜆), that 

is, 𝑋~𝐸𝐺𝑅𝐾𝑖𝐷(Ω), if its CDF and PDF are respectively given 
by: 

𝐹(𝑥) = (1 − 𝑒
−𝛼(

𝑥
1−𝑥

)
𝜆

)

𝛽

, 𝑥 ∈ (0,1), (5) 

and 

𝑓(𝑥) = 𝛼𝛽𝜆𝑥𝜆−1(1 − 𝑥)−(𝜆+1)𝑒
−𝛼(

𝑥
1−𝑥

)
𝜆

(1

− 𝑒
−𝛼(

𝑥
1−𝑥

)
𝜆

)

𝛽−1

, 

 

(6) 

where 𝛼 > 0, 𝛽 > 0, and 𝜆 > 0 are shape parameters.  

The parameter λ is inherited from the baseline RKiD and 
primarily governs the basic form and concentration of the 
density. The two additional shape parameters, 𝛼 and 𝛽, 
introduced through the EG framework, provide enhanced 
flexibility: 𝛼 predominantly influences the distribution’s 
skewness and tail heaviness, while 𝛽 controls the kurtosis and 
overall peakedness. By varying these parameters, the EGRKiD 
can generate a wide range of density shapes including 
symmetric, left-skewed, and right-skewed forms; and hazard 
rate behaviours such as bathtub-shaped and monotonically 
increasing patterns as shown in Figures 1 and 2 respectively. 

The survival and hazard functions of EGRKiD are:  

𝑆(𝑥) = 1 − (1 − 𝑒−(
𝑥

1−𝑥
)

𝜆

)

𝛽

, (7) 

and 

ℎ(𝑥) = 𝛼𝛽𝜆𝑥𝜆−1(1 − 𝑥)−(𝜆+1)𝑒
−𝛼(

𝑥
1−𝑥

)
𝜆

 

×

(1 − 𝑒
−𝛼(

𝑥
1−𝑥

)
𝜆

)

𝛽−1

1 − (1 − 𝑒
−(

𝑥
1−𝑥

)
𝜆

)

𝛽
, 

(8) 

respectively. The graphical behaviour of the HRF of EGRKiD 

is illustrated in Figure 2.  

Figure 1 illustrates the versatility of the EGRKiD by 
showing its density shapes under different parameter 
combinations of 𝛼, 𝛽, and 𝜆. From these plots, it is observed that 
for fixed 𝛼 = 0.4 and 𝛽 = 0.8, increasing 𝜆 from 0.1 to 1.5 
flattens the peak and elongates the left tail, indicating a 
transition from a concentrated to a more dispersed distribution. 
When 𝛽 = 2.7 and 𝜆 = 0.9 are held constant, increasing 𝛼 from 
2.3 to 4.3 sharpens the peak and accentuates right-skewness, 
suggesting 𝛼 controls tail heaviness and skewness of the 
distribution. For 𝛼 = 6.4 and 𝜆 = 3.6, increasing 𝛽 from 0.2 to 
0.6 sharpens the peak, indicating 𝛽’s role in governing the 
kurtosis of the distribution. 

Figure 2 depicts the hazard rate behaviour under varying 
𝛼, 𝛽, and 𝜆. From these plots, it is observed that for fixed 𝛼 =
0.4 and 𝛽 = 0.8, increasing 𝜆 from 0.1 to 1.5 transforms the 
failure rate from bathtub shape (at 𝜆 = 0.1) to monotonically 
increasing (at 𝜆 = 1.5). When 𝛽 = 2.7 and 𝜆 = 0.9 are held 
constant, increasing 𝛼 from 2.3 to 4.3, transforms the HRF from 
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increasing (𝛼 = 2.3) to a more rapid increasing one (𝛼 = 4.3). 
For fixed 𝛼 = 6.4 and 𝜆 = 3.6, increasing 𝛽 from 0.2 to 0.6, 
shifts the HRF from slightly bathtub curve (𝛽 = 0.2) to a 
steeply increasing curve (𝛽 = 0.6).  

 

Fig. 1. The PDF plots of EGRKiD 

 

 

Fig. 2. The HRF plots of EGRKiD 

 

3. STATISTICAL PROPERTIES OF EGRKID 

3.1 The Quantile Function and Median 

The quantile function 𝑄(𝑢) of the EGRKiD is given as 
follows: 

𝑄(𝑢) =
(−𝛼 𝑙𝑛 (1 − 𝑢

1
𝛽))

1
𝜆

1 + (−𝛼 𝑙𝑛 (1 − 𝑢
1
𝛽))

1
𝜆

, 0 < 𝑢 < 1, (9) 

the median of the EGRKiD is obtained by setting 𝑢 = 0.5 in 

in (9), which gives: 

Median =
(−𝛼 𝑙𝑛 (1 − 0. 5

1
𝛽))

1
𝜆

1 + (−𝛼 𝑙𝑛 (1 − 0. 5
1
𝛽))

1
𝜆

. (10) 

Therefore, random sample of size n can be easily generated 

from the EGRKiD(𝛼, 𝛽, 𝜆) as: 

𝑥𝑖 =
(−𝛼 𝑙𝑛 (1 − 𝑢𝑖

1
𝛽))

1
𝜆

1 + (−𝛼 𝑙𝑛 (1 − 𝑢𝑖

1
𝛽))

1
𝜆

, 𝑖 = 1,2, . . . , 𝑛, (11) 

 
where U is a rv that follows the standard uniform distribution. 

3.2 Skewness and Kurtosis 

The Bowley’s coefficient, introduced by [21], can be used 

for calculating the skewness, which is defined by: 

𝒮𝐵 =
𝑄(3 4⁄ ) − 2𝑄(2 4⁄ ) + 𝑄(1 4⁄ )

𝑄(3 4⁄ ) − 𝑄(1 4⁄ )
. (12) 

Octiles based kurtosis defined by [22] is given as: 

𝒦𝑀 =
𝑄(7 8⁄ ) − 𝑄(5 8⁄ ) + 𝑄(3 8⁄ ) − 𝑄(1 8⁄ )

𝑄(6 8⁄ ) − 𝑄(2 8⁄ )
. (13) 

The numerical illustration and graphical 
representation of the skewness and kurtosis for the 
EGRKiD are presented in Table 1 and Figure 3, 
respectively, for some selected parameter values.  

Table 1. The numerical values of skewness and kurtosis for 
EGRKiD 

𝜶 𝜷 
𝝀 = 𝟎. 𝟓   𝝀 = 𝟏. 𝟓 

skewness kurtosis   skewness kurtosis 

0.1 0.5 0.7672 1.1260  0.1694 2.7268 

0.7 0.5 0.7031 1.0361  0.0369 1.6535 

1.3 0.5 0.5625 1.0262  -0.0301 0.9914 

1.9 0.5 0.3822 1.0318  -0.0761 0.7028 

0.1 1.0 0.5613 1.1668  0.0665 1.8829 
0.7 1.0 0.3203 1.1558  -0.0535 1.0045 

1.3 1.0 -0.0139 1.1786  -0.1045 0.7837 

1.9 1.0 -0.2555 1.2021  -0.1364 0.8487 

0.1 1.5 0.4644 1.1902  0.0418 1.6570 

0.7 1.5 0.1183 1.1954  -0.0645 0.9438 

1.3 1.5 -0.2089 1.2184  -0.1060 0.9716 

1.9 1.5 -0.3791 1.2386  -0.1309 1.2024 
0.1 2.0 0.4084 1.2024  0.0328 1.5553 

0.7 2.0 0.0109 1.2112  -0.0639 0.9741 

1.3 2.0 -0.2734 1.2311  -0.0997 1.1348 

1.9 2.0 -0.3962 1.2475   -0.1207 1.4035 

 
The results in Table 1 and Figure 3 demonstrate the 

flexibility of the EGRKiD in capturing a wide range of 
distributional shapes. Table 1 indicates that increasing 𝛼 
generally reduces skewness and shifts the distribution toward 
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left-skewness, while kurtosis trends suggest a transition from 
heavier to lighter tails in certain parameter combinations. The 
3D plots in Figure 3 complement these findings by identifying 
parameter regions where the model aligns with specific data 
characteristics, such as heavy-tailed or symmetric distributions. 

 
Fig. 3. The 3D plots of skewness and kurtosis of the 
EGRKiD for different values of 𝛼 and 𝛽, at 𝜆 = 0.5 

and 𝜆 = 1.5 

3.3 Ordered statistics 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample of size n from the 
EGRKiD, and let 𝑥(1) ≤  𝑥(2), ≤  … ≤ , 𝑥(𝑛) denote the 

corresponding order statistics. The PDF and CDF of the kth 
order statistic are respectively defined as: 

𝐹𝑋(𝑟)
(𝑥) = ∑ (

𝑛
𝑘

) {𝐹(𝑥)}𝑘{1 − 𝐹(𝑥)}𝑛−𝑘

𝑛

𝑘=𝑟

, (14) 

and 

𝑓𝑋(𝑟)
(𝑥) =

𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
{𝐹(𝑥)}𝑘−1{1

− 𝐹(𝑥)}𝑛−𝑘𝑓(𝑥). 

(15) 

Substituting (5) and (6) into (14) and (15), the CDF and PDF of 

the rth order statistic of EGRKiD respectively obtained as: 

𝐹𝑋(𝑟)
(𝑥) = ∑ (

𝑛
𝑘

) {(1 − 𝑒−𝛼(
𝑥

1−𝑥
)

𝜆

)

𝛽

}

𝑘𝑛

𝑘=𝑟

{1

− (1 − 𝑒−𝛼(
𝑥

1−𝑥
)

𝜆

)

𝛽

}

𝑛−𝑘

, 

(16) 

and 

𝑓𝑥(𝑟)
(𝑥) =

𝑛! 𝛼𝛽𝜆𝑥𝜆−1(1 − 𝑥)−𝜆−1

(𝑟 − 1)! (𝑛 − 𝑟)!
𝑒−𝛼(

𝑥
1−𝑥

)
𝜆

{1

− 𝑒−𝛼(
𝑥

1−𝑥
)

𝜆

}

𝛽𝑟−1

{1

− (1 − 𝑒−𝛼(
𝑥

1−𝑥
)

𝜆

)

𝛽

}

𝑛−𝑟

. 

(17) 

Table 2: The Simulation results for the EGRKiD. 

Set I: (𝜶, 𝜷, 𝝀) = (𝟏. 𝟎𝟓, 𝟎. 𝟐𝟐, 𝟎. 𝟕𝟔) 

n 

MLE  MPS 

Bias  MSE  Bias  MSE 

𝜶̂ 𝜷̂ 𝝀̂  𝜶̂ 𝜷̂ 𝝀̂  𝜶̂ 𝜷̂ 𝝀̂  𝜶̂ 𝜷̂ 𝝀̂ 

50 0.246 0.147 0.044  0.427 0.122 0.073  0.168 0.167 0.069  0.376 0.137 0.090 

75 0.122 0.083 0.024  0.222 0.029 0.063  0.092 0.104 0.061  0.197 0.039 0.062 

100 0.105 0.07 0.036  0.169 0.019 0.041  0.060 0.081 0.054  0.155 0.023 0.048 

125 0.051 0.052 0.034  0.106 0.01 0.031  0.046 0.071 0.062  0.119 0.016 0.038 

150 0.064 0.052 0.044  0.095 0.009 0.025  0.031 0.060 0.052  0.108 0.013 0.033 

175 0.051 0.048 0.049  0.081 0.007 0.022  0.027 0.056 0.056  0.090 0.010 0.028 

200 0.016 0.04 0.035  0.071 0.006 0.021  0.015 0.050 0.053  0.077 0.008 0.024 
225 0.013 0.038 0.038  0.059 0.005 0.018  0.002 0.044 0.044  0.074 0.007 0.022 

250 0.001 0.037 0.036  0.063 0.005 0.019  0.007 0.041 0.042  0.065 0.006 0.020 

Set II: (𝜶, 𝜷, 𝝀) = (𝟎. 𝟗𝟓, 𝟎. 𝟓𝟐, 𝟎. 𝟖𝟑) 

50 0.273 0.353 0.141  0.604 1.739 0.246  0.279 0.446 0.05  0.575 2.212 0.188 
75 0.165 0.131 0.122  0.299 0.203 0.166  0.253 0.243 0.002  0.322 0.307 0.103 

100 0.151 0.095 0.084  0.209 0.104 0.083  0.226 0.182 0.011  0.231 0.157 0.055 

125 0.138 0.076 0.073  0.166 0.064 0.076  0.215 0.157 0.015  0.193 0.098 0.051 

150 0.13 0.063 0.067  0.147 0.056 0.058  0.196 0.131 0.01  0.167 0.079 0.039 

175 0.128 0.06 0.056  0.128 0.046 0.046  0.193 0.124 0.015  0.148 0.066 0.035 

200 0.127 0.048 0.046  0.101 0.03 0.034  0.196 0.111 0.019  0.127 0.048 0.027 

225 0.11 0.037 0.052  0.089 0.027 0.032  0.179 0.095 0.013  0.109 0.04 0.023 

250 0.114 0.042 0.043  0.089 0.027 0.031  0.179 0.097 0.017  0.107 0.038 0.024 

Set II: (𝜶, 𝜷, 𝝀) = (𝟎. 𝟗𝟏, 𝟎. 𝟕𝟐, 𝟎. 𝟔𝟔) 

50 0.413 0.583 0.093  0.728 7.847 0.153  0.479 0.699 0.002  0.71 8.025 0.084 

75 0.338 0.232 0.052  0.405 0.613 0.08  0.409 0.356 0.012  0.441 0.854 0.065 

100 0.299 0.16 0.038  0.293 0.295 0.052  0.392 0.283 0.033  0.338 0.373 0.035 

125 0.284 0.133 0.025  0.246 0.179 0.038  0.377 0.251 0.041  0.293 0.246 0.027 
150 0.265 0.107 0.022  0.211 0.146 0.028  0.355 0.219 0.039  0.261 0.213 0.021 

175 0.263 0.098 0.012  0.179 0.111 0.023  0.352 0.205 0.043  0.232 0.168 0.019 

200 0.244 0.069 0.016  0.149 0.075 0.019  0.327 0.165 0.035  0.194 0.111 0.016 

225 0.241 0.067 0.013  0.141 0.074 0.017  0.316 0.154 0.034  0.182 0.106 0.014 

250 0.229 0.059 0.014  0.131 0.065 0.016  0.303 0.142 0.03  0.17 0.094 0.014 
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4. ESTIMATION  

4.1 The Maximum Likelihood Estimation (MLE) 

Suppose a sample of n independent and identically 
distributed (i.i.d) rvs 𝑥1, 𝑥2, … , 𝑥𝑛 are drawn from the EGRKiD 
with unknown vector parameters Ω. The likelihood function 
𝐿(; 𝑥1, 𝑥2, … , 𝑥𝑛) is the product of the individual PDFs 
evaluated at each 𝑥𝑖. Thus, it is given as: 

𝐿(Ω; 𝑥1, 𝑥2, . . . , 𝑥𝑛) = ∏ 𝑓(𝑥𝑖; Ω)

𝑛

𝑖=1

, (18) 

thus, the log-likelihood function is  

ℓ(Ω) = ∑ 𝑙𝑜𝑔[𝑓(𝑥𝑖; Ω)]

𝑛

𝑖=1

,  

substituting (6) into the log-likelihood function, gives: 

ℓ = ∑ 𝑙𝑜𝑔 [𝛼𝛽𝜆𝑥𝜆−1(1 − 𝑥)−(𝜆+1)𝑒
−𝛼(

𝑥
1−𝑥

)
𝜆

(1

𝑛

𝑖=1

− 𝑒
−𝛼(

𝑥
1−𝑥

)
𝜆

)

𝛽−1

]. 

The log-likelihood function of EGRKiD is given by: 

ℓ = 𝑛 𝑙𝑛 𝛼 + 𝑛 𝑙𝑛 𝛽 + 𝑛 𝑙𝑛 𝜆 + (𝜆 − 1) ∑ 𝑙𝑛(𝑥𝑖)

𝑛

𝑖=1

− (𝜆 + 1) ∑ 𝑙𝑛(1 − 𝑥𝑖)

𝑛

𝑖=1

− 𝛼 ∑ (
𝑥𝑖

1 − 𝑥𝑖

)
𝜆

+ (𝛽 − 1)

𝑛

𝑖=1

+ ∑ [𝑙𝑛 (1 − 𝑒
−𝛼(

𝑥𝑖
1−𝑥𝑖

)
𝜆

)] .

𝑛

𝑖=1

 

(19) 

The partial derivative of (18) with respect to α, β, and λ, and 

equating to zero; yields 

𝜕ℓ

𝜕𝛼
=

𝑛

𝛼
− ∑ (

𝑥𝑖

1 − 𝑥𝑖

)
𝜆

𝑛

𝑖=1

− (𝛽

− 1) ∑
𝑒

−𝛼(
𝑥𝑖

1−𝑥𝑖
)

𝜆

1 − 𝑒
−𝛼(

𝑥𝑖
1−𝑥𝑖

)
𝜆

(
𝑥𝑖

1 − 𝑥𝑖

)
𝜆

𝑛

𝑖=1

= 0. 

(20) 

𝜕ℓ

𝜕𝛽
=

𝑛

𝛽
− ∑ 𝑙𝑛 (1 − 𝑒

−𝛼(
𝑥𝑖

1−𝑥𝑖
)

𝜆

)

𝑛

𝑖=1

= 0. (21) 

 

 

 

 

𝜕ℓ

𝜕𝜆

=
𝑛

𝜆
− ∑ ln(𝑥𝑖) − ∑ ln(1 − 𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

+ 𝛼(𝛽 − 1) ∑
𝑒

−𝛼(
𝑥𝑖

1−𝑥𝑖
)

𝜆

1 − 𝑒
−𝛼(

𝑥𝑖
1−𝑥𝑖

)
𝜆

𝑛

𝑖=1

(
𝑥𝑖

1 − 𝑥𝑖

)
𝜆

ln (
𝑥𝑖

1 − 𝑥𝑖

)

= 0. 

(22) 

 

Equations (20), (21) and (22) can be solved numerically with 

the help of software such as R, for MLEs of α, β, and λ 

respectively. 

4.2 The Maximum Product Spacing (MPS) Estimation 

The MPS is obtained by minimizing the function: 

𝑚 =
1

𝑛 + 1
∑ 𝑙𝑛[𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1))]

𝑛+1

𝑖=1

. (23) 

Let 𝐹(𝑋(𝑖)) be the CDF of order statistics 𝑥(1) ≤ 𝑥(2) ≤
, … , ≤ 𝑥(𝑛), from EGRKiD(𝛼, 𝛽, 𝜆). Therefore, the ith order 

statistic for 𝐹(𝑥(𝑖)) and 𝐹(𝑥(𝑖−1)) is expressed respectively as: 

𝐹(𝑥(𝑖)) = (1 − 𝑒
−𝛼(

𝑥(𝑖)

1−𝑥(𝑖)
)

𝜆

)

𝛽

, (24) 

and 

𝐹(𝑥(𝑖−1)) = (1 − 𝑒
−𝛼(

𝑥(𝑖−1)

1−𝑥(𝑖−1)
)

𝜆

)

𝛽

, (25) 

substituting (24) and (25) into (23) gives: 

𝑚 =
1

𝑛 + 1
∑ 𝑙𝑛 [(1 − 𝑒

−𝛼(
𝑥(𝑖)

1−𝑥(𝑖)
)

𝜆

)

𝛽
𝑛+1

𝑖=1

− (1 − 𝑒
−𝛼(

𝑥(𝑖−1)

1−𝑥(𝑖−1)
)

𝜆

)

𝛽

], 

(26) 

thus, the MPS estimates, say, 𝛼̂𝑀𝑃𝑆 , 𝛽̂𝑀𝑃𝑆and𝜆̂𝑀𝑃𝑆 can only be 
obtained numerically by maximizing (26) with respect to 𝛼, 𝛽 
and λ.  

 

5. SIMULATION STUDY 

Here, the performance and the accuracy of the MLE and 
MPS of the parameters of EGRKiD are assessed. Three sets of 
parameters combination were considered, and a simulation with 
1000 replications was used to generate samples of varying sizes 
using (11). All simulations were run using R programming 
language. The performance of these estimators was assessed 
using bias and mean square error (MSE). The results of the 
simulations are reported in Table 2 and they are also illustrated 
graphically in Figures 4 – 6 for each of the three parameters 
combinations respectively.  
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From Table 2, it is observed that demonstrates that both 
bias and MSE decrease as sample size increases, across the 
various parameter combinations, thereby confirming the 
consistency and efficiency of the two methods of estimation for 
the EGRKiD. The graphical representations of Table 2, which 
correlate to the numerical results of simulations, provide a 
visual comparison of the performance of these estimators, as 
shown in Figures 4 – 6. From these Figures, it is evident that 
the MLE has smaller bias and MSE compared to MPS, across 
various parameter settings and sample sizes. Hence, MLE is the 
preferred technique for estimating the EGRKiD’s parameters. 

 
Fig. 4. The bias and MSE values of the EGRKiD for various 

values of n when (𝛼, 𝛽, 𝜆) = (1.05, 0.22, 0.76) 

 
Fig. 5. The bias and MSE values of the EGRKiD for various 

values of n when (𝛼, 𝛽, 𝜆) = (0.95, 0.52, 0.83) 

6. APPLICATIONS 

Here, the EGRKiD’s applicability to two real-life datasets 
in comparison to other competing distributions are presented. 
The competing distributions are: Exponential Reduced Kies 
(ERKiD) by [18], Marshall Olkin Reduced Kies (MORKiD) by 
[23], Reduced Kies (RKiD) by [15], Topp-Leone by [24] 
Kumaraswamy by [25], Beta by [26], Unit Weibull by [27] and 
Unit Gompertz by [28]. 

To identify the most appropriate model, discrimination 
criteria such as the log-likelihood (𝓁), Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC), 
Consistent Akaike information criteria (CAIC) and Hannan–
Quinn information criteria (HQIC) were utilized. Model 
adequacy was further assessed using goodness-of-fit tests, 
including the Cramér-von Mises (W*), Anderson-Darling (A*), 
and Kolmogorov-Smirnov (KS) statistics, along with the 
corresponding p-values. The model yielding the lowest values 
for these criteria, alongside the highest KS p-value, was deemed 
the best fit for the datasets. All statistical computations were 
carried out using the AdequacyModel package in R [29]. 

Fig. 6. The bias and MSE values of the EGRKiD for various 
values of n when (𝛼, 𝛽, 𝜆) = (0.91, 0.72, 0.66) 

6.1 Data Source and Description 

The two datasets were initially introduced and examined 
by [30] in a study of burr measurements on iron sheets. The first 
dataset comprises 50 observations of burr measurements (in 
millimetres), with a hole diameter of 12 mm and sheet thickness 
of 3.15 mm. The second dataset, also containing 50 
observations, features a hole diameter of 9 mm and sheet 
thickness of 2 mm. All hole diameter measurements were taken 
from a single preselected hole with a fixed orientation. The 
datasets were collected to compare two distinct machines. For 
detailed technical specifications regarding the measurement 
methodology, readers may refer to [30]. Subsequently, these 
datasets were analysed by [31]. The datasets are given as: 

Dataset I: 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08, 
0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16, 
0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 
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0.16, 0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 
0.22, 0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16. 

Dataset II: 0.06, 0.12, 0.14, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 
0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.22, 0.16, 
0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.02, 0.18, 0.22, 0.14, 
0.06, 0.04, 0.14, 0.22, 0.14, 0.06, 0.04, 0.16, 0.24, 0.16, 0.32, 
0.18, 0.24, 0.22, 0.04, 0.14, 0.26, 0.18, 0.16.  

Additionally, summary statistics for both datasets are presented 
in Table 3. 

From Table 3, the two datasets present different 
distributional characteristics, with Dataset I showing a slight 
positive skewness and Dataset II being approximately 
symmetric. The flexibility of the EGRKiD allows it to 
accommodate both situations effectively. By adjusting its shape 
parameters, the model can represent skewed forms when 
needed, as in Dataset I, and reduce to a nearly symmetric form 
for Dataset II. This adaptability ensures that the fitted density 
accurately reflects the underlying data shape in each case as 
shown in Figure 1. 

 

6.2 Results and Discussion 

The performance of the EGRKiD, alongside competing 
models applied to the two real-life datasets, is summarized in 
Tables 4 – 7. 

  

 

The performances for the EGRKiD and other eight 
competing models with applications to real-life datasets I and II 
are given in Tables 4 – 7, respectively, displaying the MLEs, 
along with their respective standard errors (in parentheses), as 
well as various goodness-of-fit tests and discrimination criteria 
values. Among all the competing models considered, the 
EGRKiD consistently achieved the lowest values for 𝓁, AIC, 
BIC, CAIC, HQIC, W*, A*, and KS statistics, and the highest 

KS p-value, for the two datasets. For Dataset I, its KS 
confidence interval did not overlap with those of the ERKiD, 
RKiD, and Topp-Leone, indicating a significantly better fit, 
while for models with overlapping intervals (MORKiD, Unit 
Weibull, Unit Gompertz, Kumaraswamy, Beta), its lower KS 
statistic and higher p-value still suggested better performance, 

Table 3. Descriptive statistics for the datasets 
Statistic Dataset I Dataset II 

Sample Size (n) 50 50 

Minimum 0.020 0.020 
Maximum 0.320 0.320 

Mean 0.163 0.152 

Standard Deviation 0.081 0.078 
Skewness 0.072 0.006 

Kurtosis 2.217 2.301 

 

Table 6. The discrimination criteria for dataset I 
Model – 𝓁 AIC CAIC BIC HQIC 

EGRKiD -57.2453 -108.4905 -102.7544 -107.9688 -106.3062 

ERKiD -28.9559 -53.9118 -50.0878 -53.6565 -52.4556 

MORKiD -52.3191 -100.6383 -96.8142 -100.3829 -99.1820 

RKiD -11.6763 -21.3526 -19.4405 -21.2692 -20.6244 

Unit Weibull -48.6620 -93.3240 -89.4999 -93.0686 -91.8677 

Unit Gompertz -40.6712 -77.3423 -73.5183 -77.0870 -75.8861 

Kumaraswamy -55.6236 -107.2473 -103.4232 -106.9920 -105.7911 
Beta -54.6062 -105.2125 -101.3884 -104.9572 -103.7563 

Topp-Leone -28.4078 -54.8156 -52.9036 -54.7323 -54.0875 

 

Table 4. The MLEs with their associated standard errors (SEs), goodness-of-fit tests for dataset I 

Model MLEs (SEs) W* A* KS 95% CI (KS) KS p-value 

EGRKiD (𝛼̂, 𝛽̂, 𝜆̂) 15.6660 (8.4058) 0.7228 (0.4201) 2.1113 (0.7765) 0.0754 0.4525 0.0863 (0.0000, 0.2786) 0.8502 

ERKiD (𝑎̂, 𝑏̂) 6.0910 (1.5797) 0.0903 (0.0265) - 0.1044 0.6240 0.3576 (0.1653, 0.5499) 0.0000 

MORKiD (𝑐̂, 𝑑̂) 2.3458 (0.2923) 0.0182 (0.0098) - 0.1959 1.1848 0.1196 (0.0000, 0.3119) 0.4716 

RKiD (𝑒̂) 0.7368 (0.0877) - - 0.1649 0.9866 0.5633 (0.3710, 0.7556) 0.0000 

Unit Weibull (𝑓̂, 𝑔) 0.0875 (0.0291) 3.0569 (0.3110) - 0.3218 1.8702 0.1809 (0.0000, 0.3732) 0.0759 

Unit Gompertz (ℎ̂, 𝑖̂) 0.0929 (0.0398) 1.0714 (0.1392) - 0.5195 2.9551 0.2057 (0.0134, 0.3980) 0.0291 

Kumaraswamy (𝑗̂, 𝑘̂) 1.8516 (0.2133) 22.4239 (7.9955) - 0.1114 0.6789 0.1291 (0.0000, 0.3214) 0.3749 

Beta (𝑚̂, 𝑛̂) 2.6833 (0.5073) 13.8331 (2.8212) - 0.1480 0.8929 0.1399 (0.0000, 0.3322) 0.2815 

Topp-Leone(𝑝̂, 𝑞̂) 0.7248 (0.1025) - - 0.1654 0.9919 0.3623 (0.1700, 0.5546) 0.0000 

 

Table 5. The MLEs with their associated standard errors (SEs), goodness-of-fit tests for dataset II 

Model MLEs (SEs) W* A* KS 95% CI (KS) KS p-value 

EGRKiD (𝛼̂, 𝛽̂, 𝜆̂) 20.8118 (12.1021) 0.5948 (0.3209) 2.3344 (0.7960) 0.1293 0.7660 0.1283 (0.0000, 0.3206) 0.3825 

ERKiD (𝑎̂, 𝑏̂) 4.8886 (3.0155) 0.1056 (0.0660) - 0.2151 1.1958 0.3774 (0.1869, 0.5715) 0.0000 

MORKiD (𝑐̂, 𝑑̂) 2.1740 (0.2749) 0.0201 (0.0107) - 0.3571 1.9775 0.1723 (0.0000, 0.3646) 0.1028 

RKiD (𝑒̂) 0.6947 (0.0827) - - 0.3094 1.6980 0.5766 (0.3843, 0.7689) 0.0000 

Unit Weibull (𝑓̂, 𝑔) 0.0788 (0.0267) 2.9954 (0.3040) - 0.4807 2.6031 0.2306 (0.0383, 0.4229) 0.0098 

Unit Gompertz (ℎ̂, 𝑖̂) 0.0906 (0.0408) 1.0289 (0.1397) - 0.6699 3.6332 0.2319 (0.0396, 0.4242) 0.0092 

Kumaraswamy (𝑗̂, 𝑘̂) 1.6695 (0.1918) 18.4133 (6.2001) - 0.2297 1.2906 0.1857 (0.0000, 0.3780) 0.0637 

Beta (𝑚̂, 𝑛̂) 2.3971 (0.4505) 13.5137 (2.7689) - 0.2768 1.5346 0.1986 (0.0063, 0.3909) 0.0388 

Topp-Leone(𝑝̂, 𝑞̂) 0.6804 (0.0962) - - 0.3033 1.6703 0.3771 (0.1848, 0.5694) 0.0000 

 

Table 7. The discrimination criteria for dataset II 
Model - 𝓁 AIC CAIC BIC HQIC 

EGRKiD -59.3206 -112.6411 -106.9051 -112.1194 -110.4568 

ERKiD -30.0885 -56.1770 -52.3530 -55.9217 -54.7208 

MORKiD -52.9609 -101.9219 -98.0978 -101.6666 -100.4657 

RKiD -12.8363 -23.6726 -21.7606 -23.5893 -22.9445 
Unit Weibull -50.0215 -96.0429 -92.2189 -95.7876 -94.5867 

Unit Gompertz -42.6095 -81.2190 -77.3950 -80.9637 -79.7628 

Kumaraswamy -56.6920 -109.3840 -105.5599 -109.1287 -107.9278 

Beta -55.9312 -107.8623 -104.0383 -107.6070 -106.4061 

Topp-Leone -30.4332 -58.8663 -56.9543 -58.7830 -58.1382 
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though not statistically significant. A similar pattern was 
observed for Dataset II, where non-overlapping intervals with 
ERKiD, RKiD, Unit Weibull, Beta, and Topp-Leone confirmed 
superiority, and overlapping intervals with MORKiD, Unit 
Gompertz, and Kumaraswamy still favoured the EGRKiD in 
terms of lower KS and higher p-values. 

The strong performance of the EGRKiD in both datasets is 
largely due to its ability to model a wide range of distributional 
shapes through independent control of skewness and kurtosis. 
This flexibility allows the model to capture both central and tail 
behaviour more accurately than the competing unit-bounded 
distributions. In particular, the EGRKiD can adapt to data with 
heavier or lighter tails and varying degrees of asymmetry, while 
also accommodating hazard rate shapes such as bathtub and 
monotonically increasing forms. These features enable a closer 
match to the underlying structure of the burr measurement data, 
which is reflected in the consistently lower information criteria 
and better goodness-of-fit statistics observed across the 
analyses. 

These results indicate that the EGRKiD offers the best fit 
to both datasets. This conclusion is further substantiated by 
Figures 7 – 16. 

 
Fig. 7. The fitted PDFs for dataset I 

 
Fig. 8. The fitted PDFs for dataset II 

Figures 7 and 8 depicts the fitted PDFs of the various fitted 
models superimposed in the histogram of the Datasets I and II. 
The closer the fit to the histogram, the more likely that 
particular distribution is a good representation of the datasets. 
It is easily observed from this Figure that EGRKiD provides the 
best fit for the datasets than its competing models. 

 
Fig. 9. The fitted CDFs for dataset I. 
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Fig. 10. The fitted CDFs for dataset II 

The fitted CDFs plots in Figures 9 and 10 reveal that the 
EGRKiD achieves the highest correlation values 0.9934 and 
0.9892 across Datasets I and II respectively, outperforming 
other competing models. This exceptional alignment between 
empirical and theoretical CDFs emphasizes the EGRKiD's 
superior fit and reliability in modelling the burr measurements 
datasets. 

To further substantiate the conclusion on the fitted PDFs 
and CDFs plots given in Figures 7 - 10, the integrated squared 
error (ISE), mean absolute error (MAE), Kullback-Leibler (KL) 
divergence, and Chi-square (χ2) statistic. The result of these 
measures is presented in Tables 8 and 9. 

 

Table 8. Quantitative comparison of fitted PDFs and CDFs 
for dataset I 

Model ISE MAE KL χ2 

EGRKiD 0.0029 0.0464 0.2748 1.2390 

ERKiD 0.0447 0.1732 11.1527 31.7921 

MORKiD 0.0033 0.0493 2.3377 5.5656 

RKiD 0.1217 0.2928 18.1056 58.3804 
Unit Weibull 0.0045 0.0539 3.8897 9.2605 

Unit Gompertz 0.0100 0.0794 7.0245 19.1602 

Kumaraswamy 0.0018 0.0398 0.9020 2.3400 

Beta 0.0019 0.0411 1.4289 4.0023 

Topp-Leone 0.0436 0.1677 11.4131 31.1123 

 

Table 9. Quantitative comparison of fitted PDFs and CDFs 
for dataset II 

Model ISE MAE KL χ2 

EGRKiD 0.0040 0.0589 0.7640 4.1205 

ERKiD 0.0472 0.1742 12.0336 38.5533 

MORKiD 0.0059 0.0659 3.2897 11.3634 

RKiD 0.1256 0.2984 18.9818 68.0182 

Unit Weibull 0.0066 0.0714 4.5320 16.3555 
Unit Gompertz 0.0112 0.0863 7.4493 28.0127 

Kumaraswamy 0.0034 0.0514 1.7280 7.0653 

Beta 0.0036 0.0513 2.1305 8.8968 

Topp-Leone 0.0447 0.1672 11.9492 37.5536 

From the Tables 8 and 9, it is seen that the EGRKiD 
exhibits the smallest values of ISE, MAE, KL, and χ2 across 
both datasets. This suggests superiority of the EGRKiD in 
fitting the datasets. 

The Total Time on Test (TTT) plots for datasets I and II 
shown Figures 11 and 12 respectively, reveal a concave pattern, 
indicating that the data are characterized by increasing hazard 
rates; hence, consistent with the patterns shown in the 
corresponding HRF plots. The increasing hazard rates observed 
in both datasets indicate that as burr size grows, the likelihood 
of encountering even larger burrs also rises. In practical 
manufacturing terms, this may reflect the effect of progressive 
tool wear or material fatigue, where once burr formation begins 
to increase, it tends to accelerate unless corrective action is 
taken. These results highlight the EGRKiD’s flexibility in 
capturing increasing failure rates. 

Fig. 11. The HRF and TTT plots of the EGRKiD for dataset I 

 
Fig. 12. The HRF and TTT plots of the EGRKiD for dataset II 

From Figures 13 and 14, the probability-probability (PP) 
plots demonstrate strong agreement between the empirical and 
theoretical distributions for the two datasets, with highest and 
near-perfect correlations of 0.9915 and 0.9856 respectively in 
comparison to other competing models, validating the 
robustness and reliability of the EGRKiD in capturing the 
underlying distributional characteristics of the datasets. 
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Fig. 13. The PP Plots for dataset I 

The quantile-quantile (QQ) plots in Figures 15 and 16 
demonstrate that the EGRKiD has the highest correlation values 
0.9906 and 0.9843 across the two datasets, indicating a good fit 
between empirical and theoretical quantiles, hence, it 
outperforms all the other competing distributions, validating its 
robustness in capturing the true underlying distribution of the 
datasets. 

To further validate the model’s fit on the PP and QQ plots 
given in Figures 13 – 16, residual diagnostics analyses were 
conducted, including randomized quantile residuals, PP and 
QQ plot deviations. The mean absolute deviation (MAD) and 
mean squared deviation (MSD) were employed to quantify 
deviations in the PP and QQ plots, enabling a comparative 
assessment of model fit. Additionally, the Shapiro-Wilk (S-W) 
test was applied to evaluate whether the residuals adhered to a 
standard normal distribution. A model with an SW p-value > 
0.05 suggests a satisfactory fit. Lower values of PP-MAD, PP-
MSD, QQ-MAD, and QQ-MSD indicate minimal deviations in 
the diagnostic plots, reinforcing the model’s superior 
performance. The result of these measures is presented in 
Tables 10 and 11. 

 
Fig. 14. The PP Plots for dataset II 

Fig. 15. The QQ Plots for dataset I 

From Tables 10 and 11, the EGRKiD demonstrates the 
lowest values for PP-MAD, PP-MSD, QQ-MAD, and QQ-
MSD, alongside the highest S-W and its p-value across both 
datasets. This consistently strong performance underscores the 
EGRKiD’s superiority over competing models. Notably, while 
the Kumaraswamy model achieved marginally lower PP-MAD 
and PP-MSD values, the difference is negligible, and the 
EGRKiD’s overall diagnostic results, particularly its higher S-
W p-value and lower QQ plot deviations, solidify its position as 
the most robust choice. 
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Fig. 16. The QQ Plots for dataset II 

Table 10. Residual diagnostics analyses for dataset I. 

Model 
PP- 

MAD 

PP- 

MSD 

QQ- 

MAD 

QQ- 

MSD 
S-W (p-value) 

EGRKiD 0.0396 0.0021 0.0093 0.0001 0.9730 (0.3043) 

ERKiD 0.1696 0.0419 0.0867 0.0119 0.9631 (0.1197) 

MORKiD 0.0449 0.0025 0.0207 0.0013 0.9285 (0.0049) 

RKiD 0.2838 0.1160 0.2302 0.0843 0.9401 (0.0136) 

Unit Weibull 0.0490 0.0041 0.0324 0.0035 0.8844 (0.0002) 
Unit Gompertz 0.0762 0.0094 0.0707 0.0194 0.8140 (0.0000) 

Kumaraswamy 0.0354 0.0014 0.0132 0.0003 0.9590 (0.0807) 

Beta 0.0367 0.0015 0.0150 0.0004 0.9460 (0.0233) 

Topp-Leone 0.1641 0.0408 0.1302 0.0372 0.9398 (0.0132) 

Table 11. Residual diagnostics analysis for dataset II 

Model 
PP- 

MAD 

PP- 

MSD 

QQ- 

MAD 

QQ- 

MSD 
S-W (p-value) 

EGRKiD 0.0501 0.0030 0.0116 0.0002 0.9607 (0.0952) 

ERKiD 0.1705 0.0442 0.0882 0.0132 0.9414 (0.0153) 

MORKiD 0.0603 0.0049 0.0257 0.0017 0.9001 (0.0005) 

RKiD 0.2896 0.1197 0.2388 0.0928 0.9142 (0.0015) 

Unit Weibull 0.0686 0.0062 0.0365 0.0039 0.8645 (0.0000) 

Unit Gompertz 0.0835 0.0105 0.0720 0.0197 0.8048 (0.0000) 

Kumaraswamy 0.0458 0.0029 0.0179 0.0006 0.9353 (0.0089) 

Beta 0.0481 0.0032 0.0188 0.0006 0.9228 (0.0030) 

Topp-Leone 0.1619 0.0418 0.1289 0.0382 0.9156 (0.0016) 

 

7. CONCLUSION 

This study introduces a new three-parameter unit-bounded 
model, termed the Exponentiated Generalized Reduced Kies 
Distribution, which offers an improved alternative to several 
existing statistical distributions through applications to real-life 
datasets. Both graphical and numerical analyses demonstrate 
that the distribution’s density can exhibit right-skewed, left-
skewed, or symmetric shapes, while its hazard function may 
display either a bathtub or increasing failure rate. Key 
properties of the distribution are thoroughly explored. A 
comprehensive simulation study is conducted to evaluate and 
compare the performance of parameter estimators, revealing 
that the maximum likelihood estimation method generally 
outperforms the maximum product of spacings approach. To 

illustrate the practical relevance of the proposed model, it is 
applied to two real-life datasets. The findings suggest that this 
new distribution has strong potential as a flexible and effective 
modelling tool across various applied domains. For example, in 
medical studies, the EGRKiD could be applied to variables such 
as diagnostic test scores or proportions of affected tissue, which 
are bounded between 0 and 1 and may show either skewed or 
symmetric patterns. In finance, it could be used for modelling 
portfolio weight allocations, where capturing different shapes 
and tail behaviours is important for accurate risk evaluation. 
The EGRKiD’s ability to adapt to these varied data structures 
gives it a practical advantage over other established unit-
bounded distributions. 
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