Effect of Different Number of Coating for Anode Functional Layer on the Performance of Proton Ceramic Fuel Cell

Authors

  • L. A Malik Proton Conducting Fuel Cell Research Group, Faculty of Applied Sciences,Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia https://orcid.org/0000-0002-8195-7511
  • A. A. Samat Faculty of Mechanical Engineering and Technology, Universiti Malaysia Perlis, Pauh Putra Campus, 02600, Arau, Perlis, Malaysia https://orcid.org/0000-0002-9407-6684
  • N. Osman Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Arau, Perlis, Malaysia https://orcid.org/0000-0002-6303-8554

DOI:

https://doi.org/10.56532/mjsat.v5i3.501

Keywords:

Anode Functional Layer , Proton Ceramic Fuel Cell, Anode Coating Layer, EIS Analysis, Impedance Spectra

Abstract

The effect of different numbers of anode functional layers (AFL) on the performance of an anode-supported proton ceramic fuel cell (PCFC) was investigated. Button cells of NiO-BCZY (50:50) | BCZY | LSCF (BCZY = BaCe₀.₅₄Zr₀.₃₆Y₀.₁O₂.₉₅) were fabricated with 3, 6, and 9 layers of AFL consisting of NiO-BCZY (10:90). Microstructural images clearly show that the button cell with 3 AFL layers exhibits better contact between the anode and electrolyte layers. Both the polarization resistance (RP) and ohmic resistance (Ro) of cell A (3 layers) were lower than those of cell B (6 layers) and cell C (9 layers). At 800°C, the RP decreased from 79.6 Ωcm² for cell C (9 layers) to 19.3 Ωcm² for cell A (3 layers). Similarly, the RP for cell B (6 layers) decreased from 11.2 Ωcm² to 9.2 Ωcm² for cell A. These results suggest that increasing the number of AFLs may reduce cell performance by hindering hydrogen ion diffusion, as the ions must travel a longer pathway, leading to higher polarization resistance.

References

Fu, P., Zeng, M., & Wang, Q. (2016, November). Effect of gradient anode on mass transfer performance for anode-supported planar solid oxide fuel cells. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection. doi: https://doi.org/10.1115/IMECE2016-66095.

Chen, X., Lin, J., Sun, L., Liu, T., Wu, J., Sheng, Z., & Wang, Y. (2019). Improvement of output performance of solid oxide fuel cell by optimizing the active anode functional layer. Electrochimica Acta, 298, 112–120. doi: https://doi.org/10.1016/j.electacta.2018.12.078.

Ai, N., Lü, Z., Tang, J., Chen, K., Huang, X., & Su, W. (2008). Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer. Journal of Power Sources, 185(1), 153-158. doi: https://doi.org/10.1016/j.jpowsour.2008.06.030.

Bi, L., Fabbri, E., & Traversa, E. (2012). Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochemistry Communications, 16(1), 37-40. doi: https://doi.org/10.1016/j.elecom.2011.12.023.

Zhang, X., Qiu, Y., Jin, F., Guo, F., Song, Y., & Zhu, B. (2013). A highly active anode functional layer for solid oxide fuel cells based on proton-conducting electrolyte BaZr0.1Ce0.7Y 0.2O3-δ. Journal of Power Sources, 241, 654–659. doi: https://doi.org/10.1016/j.jpowsour.2013.05.002.

Yamaguchi, T., Sumi, H., Hamamoto, K., Suzuki, T., Fujishiro, Y., Carter, J. D., & Barnett, S. A. (2014). Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature. International Journal of Hydrogen Energy, 39(34), 19731–19736. doi: https://doi.org/10.1016/j.ijhydene.2014.09.128.

Kagomiya, I., Kaneko, S., Yagi, Y., Kakimoto, K. ichi, Park, K., & Cho, K. H. (2017). Dependence of power density on anode functional layer thickness in anode-supported solid oxide fuel cells. Ionics, 23(2), 427–433. doi: https://doi.org/10.1007/s11581-016-1860-5.

Morales, M., & Laguna-Bercero, M. Á. (2018). Influence of Anode Functional Layers on Electrochemical Performance and Mechanical Strength in Microtubular Solid Oxide Fuel Cells Fabricated by Gel-Casting. ACS Applied Energy Materials, 1(5), 2024–2031. doi: https://doi.org/10.1021/acsaem.8b00115.

Park, Y. M., Lee, H. J., Bae, H. Y., Ahn, J. S., & Kim, H. (2012). Effect of anode thickness on impedance response of anode-supported solid oxide fuel cells. International Journal of Hydrogen Energy, 37(5), 4394–4400. doi: https://doi.org/10.1016/j.ijhydene.2011.11.152.

Lee, S., Park, I., Lee, H., & Shin, D. (2014). Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells. International Journal of Hydrogen Energy, 39(26), 14342–14348. doi: https://doi.org/10.1016/j.ijhydene.2014.03.135.

Senari, S., N. Osman, and A. Jani. Impedance Study on NiO-BaCe0.54Zr0.36Y0.1O2.95 Composite Anode for PCFC. in Journal of Physics: Conference Series. 2018. IOP Publishing. doi: https://doi.org/10.1088/1742-6596/1083/1/012026.

Ismail, I., N. Osman, and A.M.M. Jani, Tailoring the microstructure of La0. 6Sr0. 4Co0. 2Fe0. 8O3− α cathode material: the role of dispersing agent. Journal of Sol-Gel Science and Technology, 2016. 80(2): p. 259-266. doi: https://doi.org/10.1007/s10971-016-4102-4.

Downloads

Published

2025-09-15

How to Cite

[1]
L. A Malik, A. A. Samat, and N. Osman, “Effect of Different Number of Coating for Anode Functional Layer on the Performance of Proton Ceramic Fuel Cell”, Malaysian J. Sci. Adv. Tech., vol. 5, no. 3, pp. 190–193, Sep. 2025.