Effect of Different Number of Coating for Anode Functional Layer on the Performance of Proton Ceramic Fuel Cell
DOI:
https://doi.org/10.56532/mjsat.v5i3.501Keywords:
Anode Functional Layer , Proton Ceramic Fuel Cell, Anode Coating Layer, EIS Analysis, Impedance SpectraAbstract
The effect of different numbers of anode functional layers (AFL) on the performance of an anode-supported proton ceramic fuel cell (PCFC) was investigated. Button cells of NiO-BCZY (50:50) | BCZY | LSCF (BCZY = BaCe₀.₅₄Zr₀.₃₆Y₀.₁O₂.₉₅) were fabricated with 3, 6, and 9 layers of AFL consisting of NiO-BCZY (10:90). Microstructural images clearly show that the button cell with 3 AFL layers exhibits better contact between the anode and electrolyte layers. Both the polarization resistance (RP) and ohmic resistance (Ro) of cell A (3 layers) were lower than those of cell B (6 layers) and cell C (9 layers). At 800°C, the RP decreased from 79.6 Ωcm² for cell C (9 layers) to 19.3 Ωcm² for cell A (3 layers). Similarly, the RP for cell B (6 layers) decreased from 11.2 Ωcm² to 9.2 Ωcm² for cell A. These results suggest that increasing the number of AFLs may reduce cell performance by hindering hydrogen ion diffusion, as the ions must travel a longer pathway, leading to higher polarization resistance.
References
Fu, P., Zeng, M., & Wang, Q. (2016, November). Effect of gradient anode on mass transfer performance for anode-supported planar solid oxide fuel cells. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection. doi: https://doi.org/10.1115/IMECE2016-66095.
Chen, X., Lin, J., Sun, L., Liu, T., Wu, J., Sheng, Z., & Wang, Y. (2019). Improvement of output performance of solid oxide fuel cell by optimizing the active anode functional layer. Electrochimica Acta, 298, 112–120. doi: https://doi.org/10.1016/j.electacta.2018.12.078.
Ai, N., Lü, Z., Tang, J., Chen, K., Huang, X., & Su, W. (2008). Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer. Journal of Power Sources, 185(1), 153-158. doi: https://doi.org/10.1016/j.jpowsour.2008.06.030.
Bi, L., Fabbri, E., & Traversa, E. (2012). Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochemistry Communications, 16(1), 37-40. doi: https://doi.org/10.1016/j.elecom.2011.12.023.
Zhang, X., Qiu, Y., Jin, F., Guo, F., Song, Y., & Zhu, B. (2013). A highly active anode functional layer for solid oxide fuel cells based on proton-conducting electrolyte BaZr0.1Ce0.7Y 0.2O3-δ. Journal of Power Sources, 241, 654–659. doi: https://doi.org/10.1016/j.jpowsour.2013.05.002.
Yamaguchi, T., Sumi, H., Hamamoto, K., Suzuki, T., Fujishiro, Y., Carter, J. D., & Barnett, S. A. (2014). Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature. International Journal of Hydrogen Energy, 39(34), 19731–19736. doi: https://doi.org/10.1016/j.ijhydene.2014.09.128.
Kagomiya, I., Kaneko, S., Yagi, Y., Kakimoto, K. ichi, Park, K., & Cho, K. H. (2017). Dependence of power density on anode functional layer thickness in anode-supported solid oxide fuel cells. Ionics, 23(2), 427–433. doi: https://doi.org/10.1007/s11581-016-1860-5.
Morales, M., & Laguna-Bercero, M. Á. (2018). Influence of Anode Functional Layers on Electrochemical Performance and Mechanical Strength in Microtubular Solid Oxide Fuel Cells Fabricated by Gel-Casting. ACS Applied Energy Materials, 1(5), 2024–2031. doi: https://doi.org/10.1021/acsaem.8b00115.
Park, Y. M., Lee, H. J., Bae, H. Y., Ahn, J. S., & Kim, H. (2012). Effect of anode thickness on impedance response of anode-supported solid oxide fuel cells. International Journal of Hydrogen Energy, 37(5), 4394–4400. doi: https://doi.org/10.1016/j.ijhydene.2011.11.152.
Lee, S., Park, I., Lee, H., & Shin, D. (2014). Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells. International Journal of Hydrogen Energy, 39(26), 14342–14348. doi: https://doi.org/10.1016/j.ijhydene.2014.03.135.
Senari, S., N. Osman, and A. Jani. Impedance Study on NiO-BaCe0.54Zr0.36Y0.1O2.95 Composite Anode for PCFC. in Journal of Physics: Conference Series. 2018. IOP Publishing. doi: https://doi.org/10.1088/1742-6596/1083/1/012026.
Ismail, I., N. Osman, and A.M.M. Jani, Tailoring the microstructure of La0. 6Sr0. 4Co0. 2Fe0. 8O3− α cathode material: the role of dispersing agent. Journal of Sol-Gel Science and Technology, 2016. 80(2): p. 259-266. doi: https://doi.org/10.1007/s10971-016-4102-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 L. A Malik , A. A. Samat, N. Osman

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
