Analysis of Bacterial Communities and Physico-chemical Properties of Grain Corn Silage Using 16S Amplicon Metagenomics in Malaysia

Authors

  • Minhalina Badrul Hisham Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
  • Amalia MohdHashim Universiti Putra Malaysia
  • Nursyuhaida Mohd Hanafi Agro-Biotechnology Malaysia Institutes (ABI), National Institutes of Biotechnology Malaysia (NIBM), Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC) c/o MARDI Headquarters, Serdang, 43400, Selangor, Malaysia
  • Nur Elina Abdul Mutalib Institutes for Health Systems Research, Research, National Institutes of Health Malaysia (NIH), 40170 Shah Alam, Selangor, Malaysia
  • Tan Chun Keat Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.56532/mjsat.v5i2.405

Keywords:

16S Amplicon Sequencing, Bacterial Communities, Fermentation Characteristics, Grain Corn Silage, Silage Quality

Abstract

Tropical regions produce silage that is susceptible to spoiling due to excessive humidity and warmth. Consequently, identifying native bacteria as a possible inoculant is important to enhancing the quality of silage. The aim of this work was to use amplicon metagenomics to identify the bacterial community and functional changes related to ensiling and to forecast possible bacterial inoculant related to grain corn silage quality in the Malaysian climate. The fermentation characteristics and functional bacterial populations grain corn were produced and studied. After fermentation, the grain corn silage had a lactic acid bacteria (LAB) predominance. The dominant taxa in fresh grain corn, Leuconostoc & Pseudomonas were displaced by LAB, namely Weissella and Lactobacillus and showed high silage quality with an increase in lactic acid (LA) and acetic acid (AA), conversely decrease in water-soluble carbohydrates (WC). Tax4fun's functional prediction revealed metabolic pathways of coenzyme and transport and metabolism were depleted while synthesis of secondary metabolites which associated to fermentation activities (p<0.05) was enriched in after ensiling, likely to support bacterial growth during silage fermentation and produce metabolic byproducts like lactic acid. This study highlighted the presence and potential roles of homolactic and heterolactic bacterial populations before and after ensiling, which can be utilized to produce more effective bacterial additives for improving the fermentation quality of grain corn silage in tropical climates like Malaysia.

References

Ministry of Economy, Malaysia. (2024, December 2024). Malaysia Trade Statistics Review 2024 [Press Release]. https://www.dosm.gov.my/uploads/release-content/file_20241226085242.pdf

Malaysia Productivity Corporation. (2020). Potential Application of Circular Economy Concept in Livestock Production. Petaling Jaya: Malaysia Productivity Corporation.

Nazli, M. H., Halim, R. A., Abdullah, A. M., Hussin, G. & Samsudin, A. A. Potential of four corn varieties at different harvest stages for silage production in Malaysia. Asian-Australasian J. Anim. Sci. 32, 224–232 (2019). https://doi.org/10.5713/ajas.18.0175

Zafar, M., Akbar, F., Irtaza, M., Zafar, M., Saeed, M., & Khalid, M. (2020). Tapping into the unsung potential of maize (Zea mays l.) based silage in animal feed industry. Bulletin of Biological and Allied Sciences Research, 5, 40. https://doi.org/10.54112/bbasr.v2020i1.40

Loy, D., & Lundy, E. (2018). Nutritional Properties and Feeding Value of Corn and Its Coproducts. Corn (Third Edition), 633-659. https://doi.org/10.1016/B978-0-12-811971-6.00023-1

Jiang, H., Wang, S., Wang, H., Jing, Y., Qu, H., Sun, L., Wang, J., Liu, B., & Gao, F. (2024). Influence on the fermentation quality, microbial diversity, and metabolomics in the ensiling of sunflower stalks and alfalfa. Frontiers in Plant Science, 15, 1333207. https://doi.org/10.3389/fpls.2024.1333207

Balehegn, M., Ayantunde, A., Amole, T., Njarui, D., Nkosi, B. D., Müller, F. L., Meeske, R., Tjelele, T. J., Malebana, I. M., Madibela, O. R., Boitumelo, W. S., Lukuyu, B., Weseh, A., Minani, E., & Adesogan, A. T. (2021). Forage conservation in sub-Saharan Africa: Review of experiences, challenges, and opportunities. Agronomy Journal, 114(1), 75-99. https://doi.org/10.1002/agj2.20954

Haq, I. U., Sarwar, M. K., & Mohyuddin, Z. (2021). Microbial determinants in silage rotting: A challenge in winter fodders. In I. U. Haq & S. Ijaz (Eds.), Sustainable winter fodder: Production, challenges, and prospects (pp. 301–329). CRC Press. https://doi.org/10.1201/9781003055365-15

Peng, C., Sun, W., Dong, X., Zhao, L., & Hao, J. (2021). Isolation, identification and utilization of lactic acid bacteria from silage in a warm and humid climate area. Scientific Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-92034-0

Bernardes, T. F., Daniel, J. L. P., Adesogan, A. T., McAllister, T. A., Drouin, P., Nussio, L. G., Huhtanen, P., Tremblay, G. F., Bélanger, G., & Cai, Y. (2018). Silage review: Unique challenges of silages made in hot and cold regions. Journal of Dairy Science, 101(5), 4001–4019. https://doi.org/10.3168/jds.2017-13703

Guo, X., Xu, D., Li, F., Bai, J., & Su, R. (2023). Current approaches on the roles of lactic acid bacteria in crop silage. Microbial Biotechnology, 16(1), 67-87. https://doi.org/10.1111/1751-7915.14184

Li, D., Ni, K., Zhang, Y., Lin, Y. & Yang, F. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australas J Anim Sci 32, 665–674 (2019). https://doi.org/10.5713/ajas.18.0085

Guan, H., Yan, Y., Li, X., Li, X., Shuai, Y., Feng, G., Ran, Q., Cai, Y., Li, Y., & Zhang, X. (2018). Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bioresource Technology, 265, 282-290. https://doi.org/10.1016/j.biortech.2018.06.018

Xu, D., Ding, W., Ke, W., Li, F., Zhang, P., & Guo, X. (2019). Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus plantarum and Heterofermentative Lactobacillus buchneri. Frontiers in Microbiology, 9, 423643. https://doi.org/10.3389/fmicb.2018.03299

Xu, Z., He, H., Zhang, S., & Kong, J. (2017). Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-14052-1

Latimer, G. W., Jr. (Ed.). (2016). Official methods of analysis of AOAC International (20th ed.). AOAC International.

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry,28(3), 350-356. https://doi.org/10.1021/ac60111a017

McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The biochemistry of silage (pp. 340-pp). https://doi.org/10.5555/19930759161

Wróbel, B., Nowak, J., Fabiszewska, A., Paszkiewicz-Jasińska, A., & Przystupa, W. (2023). Dry matter losses in silages resulting from epiphytic microbiota activity—A comprehensive study. Agronomy, 13(2), 450. https://doi.org/10.3390/agronomy13020450

Getabalew, M., Mindaye, A., & Alemneh, T. (2022). Silage and enzyme additives as animal feed and animals response. Archives of Animal Husbandry & Dairy Science, 2(4), 1-6. https://doi.org/10.33552/AAHDS.2022.02.000543

Huang, Y., Liang, L., Dai, S., Wu, C., Chen, C., & Hao, J. (2021). Effect of different regions and ensiling periods on fermentation quality and the bacterial community of whole-plant maize silage. Frontiers in Microbiology, 12, 743695. https://doi.org/10.3389/fmicb.2021.743695

Wang, Y., Wang, C., Zhou, W., Yang, F., Chen, X., & Zhang, Q. (2018). Effects of Wilting and Lactobacillus plantarum Addition on the Fermentation Quality and Microbial Community of Moringa oleifera Leaf Silage. Frontiers in Microbiology, 9, 395276. https://doi.org/10.3389/fmicb.2018.01817

Okoye, C. O., Wang, Y., Gao, L., Wu, Y., Li, X., Sun, J., & Jiang, J. (2023). The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiological Research, 266, 127212. https://doi.org/10.1016/j.micres.2022.127212

Zhu, Y., Xiong, H., Wen, Z., Tian, H., Chen, Y., Wu, L., Guo, Y., & Sun, B. (2022). Effects of Different Concentrations of Lactobacillus plantarum and Bacillus licheniformis on Silage Quality, In Vitro Fermentation and Microbial Community of Hybrid Pennisetum. Animals : an open access journal from MDPI, 12(14), 1752. https://doi.org/10.3390/ani12141752

Fan, X., Zhao, S., Yang, F., Wang, Y., & Wang, Y. (2021). Effects of lactic acid bacterial inoculants on fermentation quality, bacterial community, and mycotoxins of alfalfa silage under vacuum or nonvacuum treatment. Microorganisms, 9(12), 2614. https://doi.org/10.3390/microorganisms9122614

Besrour-Aouam, N., de Los Rios, V., Hernández-Alcántara, A. M., Mohedano, M. L., Najjari, A., López, P., & Ouzari, H. I. (2023). Proteomic and in silico analyses of dextran synthesis influence on Leuconostoc lactis AV1n adaptation to temperature change. Frontiers in Microbiology, 13, 1077375. https://doi.org/10.3389/fmicb.2022.1077375

Rossi, E., La Rosa, R., Bartell, J. A., Marvig, R. L., Haagensen, J. A., Sommer, L. M., Molin, S., & Johansen, H. K. (2021). Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nature Reviews Microbiology, 19(5), 331-342. https://doi.org/10.1038/s41579-020-00477-5

Raimondi, S., Candeliere, F., Amaretti, A., Costa, S., Vertuani, S., Spampinato, G., & Rossi, M. (2022). Phylogenomic analysis of the genus Leuconostoc. Frontiers in Microbiology, 13, 897656. https://doi.org/10.3389/fmicb.2022.897656

Sun, R., Yuan, X., Li, J., Tao, X., Dong, Z., & Shao, T. (2021). Contributions of epiphytic microbiota on the fermentation characteristics and microbial composition of ensiled six whole crop corn varieties. Journal of applied microbiology, 131(4), 1683–1694. https://doi.org/10.1111/jam.15064

Nazar, M., Ullah, M. W., Wang, S., Zhao, J., Dong, Z., Li, J., Kaka, N. A., & Shao, T. (2022). Exploring the Epiphytic Microbial Community Structure of Forage Crops: Their Adaptation and Contribution to the Fermentation Quality of Forage Sorghum during Ensiling. Bioengineering, 9(9), 428. https://doi.org/10.3390/bioengineering9090428

Nazar, M., Wang, S., Zhao, J., Dong, Z., Li, J., Kaka, N. A., & Shao, T. (2021). Abundance and diversity of epiphytic microbiota on forage crops and their fermentation characteristic during the ensiling of sterile sudan grass. World Journal of Microbiology and Biotechnology, 37, 1-13. https://doi.org/10.1007/s11274-020-02991-3

Gagnon, M., Ouamba, A. J. K., LaPointe, G., Chouinard, P. Y., & Roy, D. (2020). Prevalence and abundance of lactic acid bacteria in raw milk associated with forage types in dairy cow feeding. Journal of Dairy Science, 103(7), 5931–5946. https://doi.org/10.3168/JDS.2019-17918

Li, R., Jiang, D., Zheng, M., Tian, P., Zheng, M., & Xu, C. (2020). Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Scientific Reports, 10(1), 1-14. https://doi.org/10.1038/s41598-020-74958-1

Zhang, J., Liu, Y., Wang, Z., Bao, J., Zhao, M., Si, Q., Sun, P., Ge, G., & Jia, Y. (2023). Effects of Different Types of LAB on Dynamic Fermentation Quality and Microbial Community of Native Grass Silage during Anaerobic Fermentation and Aerobic Exposure. Microorganisms, 11(2), 513. https://doi.org/10.3390/microorganisms11020513

Downloads

Published

2025-06-03

How to Cite

[1]
Minhalina Badrul Hisham, A. MohdHashim, Nursyuhaida Mohd Hanafi, Nur Elina Abdul Mutalib, and Tan Chun Keat, “Analysis of Bacterial Communities and Physico-chemical Properties of Grain Corn Silage Using 16S Amplicon Metagenomics in Malaysia”, Malaysian J. Sci. Adv. Tech., vol. 5, no. 2, pp. 123–131, Jun. 2025.

Issue

Section

Articles