Smart Maintenance System (SMAT) : Predictive Maintenance of Electrical Motor Applications
DOI:
https://doi.org/10.56532/mjsat.v5i2.473Keywords:
Predictive maintenance, Machine learning, Electrical motorAbstract
Predictive maintenance is crucial for the efficient operation of electrical motors, ensuring timely maintenance and preventing unexpected failures. This study proposes a Smart Maintenance System (SMAT) specifically designed for electrical motors, aimed at optimizing maintenance activities through predictive techniques. By utilizing mechanical vibration, electrical current, and motor body temperature sensors, the system monitors motor conditions in industrial applications such as pumps, generators, and other critical motor-driven systems to reduce unexpected downtime, lower maintenance costs, and extend motor lifespan. The sensor data is transmitted using Raspberry Pi and the TCP/IP communication protocol, with the data stored chronologically on a programmable interface controller. MATLAB is employed for data preprocessing, modeling, and prediction to facilitate maintenance decisions. A comparison of the K-Nearest Neighbour (KNN) and Artificial Neural Network (ANN) algorithms reveals accuracies ranging from 92.5% to 95.8% in classifying normal and failure conditions. The future enhancement of the system will focus on real-time data collection and improved prediction of motor conditions
References
Drakaki, M., Karnavas, Y. L., Tziafettas, I. A., Linardos, V., & Tzionas, P. (2022). Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey. Journal of Industrial Engineering and Management (JIEM), 15(1), 31-57. doi: https://doi.org/10.3926/jiem.3597
S. Soergel and P. Rastgoufard, “Analysis of induction motor predictive maintenance techniques,” Proc. Annu. Southeast. Symp. Syst. Theory, pp. 301–305, 1996, doi: https://doi.org/10.1109/ssst.1996.493518.
N. Ivanova, V. Gugleva, M. Dobreva, I. Pehlivanov, S. Stefanov, and V. Andonova, “Predictive Maintenance by Electrical Signature Analysis to Induction Motors,” Intech, vol. i, no. tourism, p. 13, 2016. doi: https://doi.org/10.5772/48045
M. Pech, J. Vrchota, and J. Bednář, “Predictive maintenance and intelligent sensors in smart factory: Review,” Sensors, vol. 21, no. 4, pp. 1–39, 2021, doi: https://doi.org/10.3390/s21041470.
Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889. doi: https://doi.org/10.1016/j.cie.2020.106889
Magadán, F. J. Suárez, J. C. Granda, and D. F. García, “Low-cost real-time monitoring of electric motors for the Industry 4.0,” Procedia Manuf., vol. 42, no. 2019, pp. 393–398, 2020, doi: https://doi.org/10.1016/j.promfg.2020.02.057.
Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On predictive maintenance in industry 4.0: Overview, models, and challenges. Applied Sciences, 12(16), 8081. doi: https://doi.org/10.3390/app12168081.
Harrou, F., Sun, Y., Dairi, A., Taghezouit, B., & Khadraoui, S. (2023). Advanced data-driven methods for monitoring solar and wind energy systems. Frontiers in Energy Research, 11, 1147746. Doi: https://doi.org/10.3389/fenrg.2023.1147746
Gawde, S., Patil, S., Kumar, S., Kamat, P., Kotecha, K., & Abraham, A. (2023). Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: A review of two decades of research. Engineering Applications of Artificial Intelligence, 123, 106139. doi: https://doi.org/10.1016/j.engappai.2023.106139
W. M. a M. Samhouri , A. Al-Ghandoor , S. Alhaj Ali , I. Hinti, “An Intelligent Machine Condition Monitoring System Using Time-Based Analysis: Neuro-Fuzzy Versus Neural Network,” Jordan J. Mech. Ind. Eng., vol. 3, no. 4, pp. 294–305, 2009. doi: https://doi.org/10.12716/1001.14.02.15
A. Giantomassi, F. Ferracuti, S. Iarlori, G. Ippoliti, and S. Longhi, “Electric motor fault detection and diagnosis by kernel density estimation and kullback-leibler divergence based on stator current measurements,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1770–1780, 2015, doi: https://doi.org/10.1109/TIE.2014.2370936.
A. Jawadekar, S. Paraskar, S. Jadhav, and G. Dhole, “Artificial neural network-based induction motor fault classifier using continuous wavelet transform,” Syst. Sci. Control Eng., vol. 2, no. 1, pp. 684–690, 2014, doi: https://doi.org/10.1080/21642583.2014.956266.
R. Yang, J. Kang, J. Zhao, J. Li, and H. Li, “A case study of bearing condition monitoring using SPM,” Proc. 2014 Progn. Syst. Heal. Manag. Conf. PHM 2014, pp. 695–698, 2014, doi: https://doi.org/10.1109/PHM.2014.6988262.
S. Biswal and G. R. Sabareesh, “Design and development of a wind turbine test rig for condition monitoring studies,” 2015 Int. Conf. Ind. Instrum. Control. ICIC 2015, no. Icic, pp. 891–896, 2015, doi: https://doi.org/10.1109/IIC.2015.7150869.
B. Chen et al., “Fault diagnosis method based on integration of RSSD and wavelet transform to rolling bearing,” Meas. J. Int. Meas. Confed., vol. 131, pp. 400–411, 2019, doi: https://doi.org/10.1016/j.measurement.2018.07.043.
J. He, S. Yang, and C. Gan, “Unsupervised fault diagnosis of a gear transmission chain using a deep belief network,” Sensors (Switzerland), vol. 17, no. 7, pp. 1–21, 2017, doi: https://doi.org/10.3390/s17071564.
X. Gou, C. Bian, F. Zeng, Q. Xu, W. Wang, and S. Yang, “A Data-Driven Smart Fault Diagnosis Method for Electric Motor,” Proc. - 2018 IEEE 18th Int. Conf. Softw. Qual. Reliab. Secur. Companion, QRS-C 2018, pp. 250–257, 2018, doi: https://doi.org/10.1109/QRS-C.2018.00053.
K. S. Kiangala and Z. Wang, “Initiating predictive maintenance for a conveyor motor in a bottling plant using industry 4.0 concepts,” Int. J. Adv. Manuf. Technol., vol. 97, no. 9–12, pp. 3251–3271, 2018, doi: https://doi.org/10.1007/s00170-018-2093-8.
M. Syafrudin, G. Alfian, N. L. Fitriyani, and J. Rhee, “Performance analysis of IoT-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing,” Sensors (Switzerland), vol. 18, no. 9, 2018, doi: https://doi.org/10.3390/s18092946.
N. S. Rosli, N. Rawaida, and R. Ibrahim, “Predictive Maintenance of Air Booster Compressor ( ABC ) Motor,” 2019 IEEE Student Conf. Res. Dev., pp. 11–16, 2019. https://doi.org/10.1109/SCORED.2019.8896330
’M Manfre’, “‘Creation of a Machine Learning Model for the Predictive Maintenance of an Engine Equipped with a Rotating Shaft,’” Nan, vol. nan, no. March, p. nan, 2020.
Pandit, R. K., Astolfi, D., & Durazo Cardenas, I. (2023). A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines. Energies, 16(4), 1654. doi: https://doi.org/10.3390/en16041654
Prudenzi, A., Fioravanti, A., & Regoli, M. (2018, June). A low-cost internet of things integration platform for a centralized supervising system of building technology systems in hospitals. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). IEEE.
T. Kebabsa, N. Ouelaa, and A. Djebala, “Experimental vibratory analysis of a fan motor in industrial environment,” Int. J. Adv. Manuf. Technol., vol. 98, no. 9–12, pp. 2439–2447, 2018, doi: https://doi.org/10.1007/s00170-018-2391-1.
A. Ouadah, L. Zemmouchi-Ghomari, and N. Salhi, “Selecting an appropriate supervised machine learning algorithm for predictive maintenance,” Int. J. Adv. Manuf. Technol., vol. 119, no. 7–8, pp. 4277–4301, 2022, doi: https://doi.org/10.1007/s00170-021-08551-9.
S. M. Lee, D. Lee, and Y. S. Kim, “The quality management ecosystem for predictive maintenance in the Industry 4.0 era,” Int. J. Qual. Innov., vol. 5, no. 1, 2019, doi: https://doi.org/10.1186/s40887-019-0029-5.
M. Kirişci, “Comparison of artificial neural network and logistic regression model for factors affecting birth weight,” SN Appl. Sci., vol. 1, no. 4, pp. 1–9, 2019, doi: https://doi.org/10.1007/s42452-019-0391-x.
Romanssini, M., de Aguirre, P. C. C., Compassi-Severo, L., & Girardi, A. G. (2023). A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery. Eng, 4(3), 1797-1817. doi: https://doi.org/10.3390/eng4030103
Gao, R. X., Yan, R., Sheng, S., & Zhang, L. (2006). Sensor Placement and Signal Processing for Bearing Condition Monitoring. 167–191. https://doi.org/10.1007/1-84628-269-1_7.
Goktas, T. (2022). Evaluation and classification of double bar breakages through three-axes vibration sensor in induction motors. IEEE Sensors Journal, 22(13), 13602-13611. doi: https://doi.org/10.1109/JSEN.2022.3170573
Anish Kumar, J., Jothi Swaroopan, N. M., & Shanker, N. R. (2022). Induction motor’s rotor slot variation measurement using logistic regression. Automatika, 63(2), 288-302. doi: https://doi.org/10.1080/00051144.2022.2089728

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anas Mohd Noor

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.