In-silico Assessment of Radiation Shielding Effectiveness of Some Materials used in Interior Building Decorations
DOI:
https://doi.org/10.56532/mjsat.v5i2.474Keywords:
Building materials, Interior decorations, Radiation shielding, Radiation safetyAbstract
The increasing trend in the use of decorative building materials for aesthetically pleasing purposes while neglecting the shielding effectiveness of these materials against penetrative radiation is a cause of concern radiologically. It is in view of this, that the present study investigates the radiation shielding properties of concrete, gypsum, glass and ceramic tile in order to intimate the end users of the radiological safety of these materials as regard interior building decorations. The linear- and mass-attenuation coefficient (LAC, MAC), half- and tenth-value layers (HVL, TVL), mean free path (MFP), effective atomic number (Zeff), and electron density (Neff) of the selected building materials were calculated for photon energies in the range between 0.05 to 1.408 MeV. The results obtained revealed that gypsum has the highest MAC and LAC values at low energies and slightly higher than other materials at high energies. The HVL, TVL, MFP and Zeff of the studied materials showed that ceramic tiles have the greater value than that of other materials with gypsum having the least. Thus, while concerted effort are being made towards achieving atheistically pleasing interior building decorations, the end users are hereby safe radiologically as these materials are effective in shielding against penetrative radiation.
References
M. J. Egenhofer. Geographic Information Science: Second International Conference, GIScience 2002, Boulder, CO, USA, September 25–28, 2002. Proceedings. Springer Science & Business Media. 2002, p. 110. https://doi.org/10.1007/3-540-45799-2
S. Yesmin, B. S. Barua, M. U. Khandaker, M. T. Chowdhury, M. Kamal, M.A. Rashid, M.M.H. Miah and D.A. Bradley,“Investigation of ionizing radiation shielding effectiveness of decorative building materials used in Bangladeshi dwellings, Radiation Physics and Chemistry, http://dx.doi.org/10.1016/j.radphyschem.2016.11.017
M. K. Lawal, P. S. Ayanlola, O. O. Oladapo, O. M. Oni, and A. A. Aremu, “Assessment of radon exhalation rates in mineral rocks used in building decoration in Nigeria”. Radiation Protection Environment; 2021, 44(3); 161 – 166 http://dx.doi.org/10.4103/rpe.rpe_39_21
A. A. Aremu, O. M. Oni, O. O. Oladapo, E. A. Oni, P. S. Ayanlola, and M. K. Lawal, “Determination of Radon Exhalation Rate from different Mixtures of Concrete” Materials Today: Proceedings, 2023, 86: 47 – 50. https://doi.org/10.1016/j.matpr.2023.02.224
G. A. Isola, P. S. Ayanlola, O. I. Ayantunji, and O. P. Bayode, “Comparative Study on the Contribution of Asbestos and Gypsum Building Materials to Environmental Radioactivity and Its Radiological Implication” International Journal of Sciences: Basic and Applied Research; 2021 56(2); 263 - 271 https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/12379/5971
United Nations Scientific Committee on the effects of Atomic Radiation (UNSCEAR) 2000. Report of UNSCEAR to the general assembly, United Nations, New York, USA
ICRP The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP, 2007, 37(2-4).
J. H. White. Your Complete Guide: Materials That Block Radiation. https://radetco.com/your-complete-guide-materials-that-block-radiation/ 2024
I. C. P. Salinas, C. C. Conti and R. T. Lopes. “Effective density and mass attenuation coefficient for building material in Brazil”. Appl Radiat Isot 2006; 64: 8–13. http://dx.doi.org/10.1016/j.apradiso.2005.07.003
I Akkurt and H. Akyıldırım. “Radiation transmission of concrete including pumice for 662, 1173 and 1332 keV gamma rays”. Nucl Eng Des 2012; 252: 163–166. https://doi.org/10.1016/j.nucengdes.2012.07.008
S. Yasmin, B. S. Barua, M. U. Khandaker, F. U. Z. Chowdhury, M. A. Rashid, D. A. Bradley, M. A. Olatunji and M. Kamal. “Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings”. Results Phys 2018a; 9: 541–549. https://doi.org/10.1016/j.rinp.2018.02.075
S Yasmin, Z. S. Rozaila, M. U. Khandaker, B. S. Barua, F. U. Z. Chowdhury, M. A. Rashid and D. A. Bradley. “The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings”. Rad Effects Defects Solids 2018b; 173: 657–672. https://doi.org/10.1080/10420150.2018.1493481
U. Cevik, N. Damla, R. Van Grieken and M. Vefa Akpınar. “Chemical composition of building materials used in Turkey”. Constr Build Mater 2011; 25: 1546–1552. https://doi.org/10.1016/j.conbuildmat.2010.08.011
H. Binici, O. Aksogan, A. H. Sevinc and A. Kucukonder. “Mechanical and radioactivity shielding performances of mortars made with colemanite, barite, ground basaltic pumice and ground blast furnace slag”. Constr Build Mater 2014; 50: 177–183. https://doi.org/10.1016/j.conbuildmat.2013.09.033
G. Tyagi, A. Singhal, S. Routroy, D. Bhunia, and M. Lahoti. “A review on sustainable utilization of industrial wastes in radiation shielding concrete”. Mater Today: Proc. 2020;32:746–51. https://doi.org/10.1016/j.matpr.2020.03.474
P. Tamayo, C. Thomas, J. Rico, S. Pérez, and A. Mañanes. “Radiation shielding properties of siderurgical aggregate concrete”. Construct Build Mater. 2022; 319:126098. https://doi.org/10.1016/j.conbuildmat.2021.126098
S. Barbhuiya, B. B. Das, P. Norman, and T. Qureshi. “A comprehensive review of radiation shielding concrete: Properties, design, evaluation, and applications” Structural Concrete. 2024; 1–47. https://doi.org/10.1002/suco.202400519
I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan and C. Basyigit. “Radiation shielding of concrete containing zeolite”. Rad Meas 2010; 45: 827–830. https://doi.org/10.1016/j.radmeas.2010.04.012
S. Yasmin, M. U. Khandaker, B. S. Barua, M. N. Mustafa, F. U. Z. Chowdhury, M. A. Rashid and D. A. Bradley. “Ionizing radiation shielding effectiveness of decorative building materials (porcelain and ceramic tiles) used in Bangladeshi dwellings”. Indoor and Built Environment 2018, 1420326X1879888. https://doi.org/10.1177/1420326X18798883
A. Santhanam. “What makes glass a class apart” (2024, May 28) https://wfmmedia.com/the-use-of-glass-in-building-design-blending-exteriors-with-interiors/
K. Hellstrom, A. Dioszegi, and L. Diaconu. “A broad literature review of density measurements of liquid cast iron. Metals”. 2017 https://doi.org/10.3390/met7050165
D.F. Jackson, and D.J. Hawkes. “X-ray attenuation coefficients of elements and mixtures”, Phys. Rep. 70 (3) (1981) 169–233 https://doi.org/10.1016/0370-1573
M. T. Alabsy, J. S. Alzahrani, M. I. Sayyed; M. I. Abbas, D. I. Tishkevich, A. M. El-Khatib, M. Elsafi “Gamma-Ray Attenuation and Exposure Buildup Factor of Novel Polymers in Shielding Using Geant4 Simulation” Materials 2021, 14, 5051. https://doi.org/10.3390/ma14175051
Q. Chang, S. Guo, and X. Zhang. “Radiation shielding polymer composites: Ray-interaction mechanism, structural design, manufacture and biomedical applications”. Materials and Design 233(2023) 112253. doi: https://doi.org/10.1016/j.matdes.2023.112253
B. Mavi. “Experimental investigation of γ-ray attenuation coefficients for granites”, Ann. Nucl. Energy 44 (2012) 22–25, https://doi.org/10.1016/j. anucene.2012.01.009
C. More, P. Pawar, M. Badawi, and A. Thabet. “Extensive theoretical study of gamma-ray shielding parameters using epoxy resin-metal chloride mixtures”, Nucl . Technol. Radiat. Prot. 35 (2) (2020) 138–149. http://dx.doi.org/10.2298/NTRP2002138M
K.A. Matori, M.I. Sayyed, H.A.A. Sidek, M.H.M. Zaid, and V.P. Singh, “Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses”, J. Non Cryst. Solids 457 (2017) 97–103, https://doi.org/10.1016/j. jnoncrysol.2016.11.029
M. Mariyappan, K. Marimuthu. M. I. Sayyed, M. G. Dong, and U. Kara. “Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses”. J. Non-Cryst. Solids 2018, 499, 75–85. https://doi.org/10.1016/j.jnoncrysol.2018.07.025
Y. S. Rammah, A. A. Ali, R. El-Mallawany, and F. I. El-Agawany. “Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth”. Phys. B Condens. Matter. 2020, 583, 412055. https://doi.org/10.1016/j.physb.2020.412055
M. Elsafi, M. A. El-Nahal, M. F., Alrashedi, O. I. Olarinoye, M. I. Sayyed, M. U. Khandaker, H. Osman, S. Alamri, and M. I. Abbas. Shielding Properties of Some Marble Types: A Comprehensive Study of Experimental and XCOM Results. Materials 2021, 14, 4194. https://doi.org/10.3390/ma14154194
E. Şakar, O. F. Özpolat, B. Alım., M. I. Sayyed, and M. Kurudirek. “Phy-X / PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry”, Radiation Physics and Chemistry 2019, doi: https://doi.org/10.1016/j.radphyschem.2019.108496
L. Gerward, N. Guilbert, K. B. Jensen, and H. Levring. “X-ray absorption in matter. Reengineering XCOM”. Radiat Phys Chem. 2001 60, 23-24. https://doi.org/10.1016/S0969-806X(00)00324-8
L. Gerward, N. Guilbert, K. B. Jensen, and H. Levring. “WinXCom - a program for calculating X-ray attenuation coefficients”. Radiat Phys Chem 2004, 71, 653-654. https://ui.adsabs.harvard.edu/link_gateway/2004RaPC...71..653G/doi:10.1016/j.radphyschem.2004.04.040
M. J. Berger, J. H. Hubbel, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen. "XCOM: photon cross section database (version 1.5). National Institute of Standards and Technology, Gaithersburg [internet]. 2010 [cited 2024 Aug. 14]. Available from: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
R. Nowotny. “XMuDat: Photon attenuation data on PC”. IAEA Report IAEA-NDS 195, 1998.
Z. Yalcin, O. Icelli, M. Okutan, R. Boncukcuoglu, O. Artun, and S. Orak. “A different perspective to the effective atomic number (Z(eff)) for some boron compounds and trommel sieve waste (TSW) with a new computer program ZXCOM”. Nucl Instrum Meth A 2012, 686, 43-47. https://doi.org/10.1016/j.nima.2012.05.041
O. Eyecioğlu, A. El-Khayatt, Y. Karabul, M. Çağlar, O. Toker, and O. Đçelli. “BXCOM: a software for computation of radiation sensing”. Radiation Effects and Defects in Solids 2019. 174, 506-518. https://doi.org/10.1080/10420150.2019.1606811
N. A. M. Rusni, H. Laoding, and A. Amat “Theoretical Ionizing Radiation Shielding Parameters of Thulium Doped Zinc Borotellurite Glass” E3S Web of Conferences 481, 03009 (2024) https://doi.org/10.1051/e3sconf/202448103009
S. I. Mohammed, and A. H. Taqi “Mass attenuation coefficient of electromagnetic radiation for human tissues” Journal of Radiation Research and Applied Sciences 18 (2025) 101255. https://doi.org/10.1016/j.jrras.2024.101255
E. S. A. Waly, M. A. Fusco and M. A. Bourham. “Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials”. Ann Nucl Energy 2016; 96: 26–30. https://doi.org/10.1016/j.anucene.2016.05.028
M. I. Abbas, A. M. El-Khatib, M. Elsafi, S. N. El-Shimy, M. F. Dib, H. M. Abdellatif, R. Baharoon, and M. M. Gouda. “Investigation of Gamma-Ray Shielding Properties of Bismuth Oxide Nanoparticles with a Bentonite–Gypsum Matrix”. Materials 2023, 16, 2056. https://doi.org/10.3390/ma16052056
M.R. Kaçal, F. Akman, M.I. Sayyed, and F. Akman. “Evaluation of gamma-ray and neutron attenuation properties of some polymers”, Nucl. Eng. Technol. 51 (3) 2019 818–824, https://doi.org/10.1016/j.net.2018.11.011.
I. Akkurt. “Effective atomic and electron numbers of some steels at different energies”. Ann Nucl Energy 2009; 36: 702–1705. https://doi.org/10.1016/j.anucene.2009.09.005
U. Cevik, and H. Baltas. “Measurement of the mass attenuation coefficients and electron densities for BiPbSrCaCuO superconductor at different energies”. Nucl Instr Meth Phys Res B 2007; 256: 619–625. https://doi.org/10.1016/j.nimb.2007.01.131
M. Kurudirek “Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV–10 GeV”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 336, 2014 130–134. https://doi.org/10.1016/j.nimb.2014.07.008
M. I. Sayyed, M. Y. AlZaatreh, K. A. Matori, H. A. A. Sidek, and M. H. M. Zaid. “Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries”, Results in Physics 2018, doi: https://doi.org/10.1016/j.rinp.2018.01.057

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 P. S. Ayanlola, M. K. Lawal, O. I. Agbelusi, G. A. Isola

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.